Skip to main content
Log in

On the solution of affine generalized Nash equilibrium problems with shared constraints by Lemke’s method

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Affine generalized Nash equilibrium problems (AGNEPs) represent a class of non-cooperative games in which players solve convex quadratic programs with a set of (linear) constraints that couple the players’ variables. The generalized Nash equilibria (GNE) associated with such games are given by solutions to a linear complementarity problem (LCP). This paper treats a large subclass of AGNEPs wherein the coupled constraints are shared by, i.e., common to, the players. Specifically, we present several avenues for computing structurally different GNE based on varying consistency requirements on the Lagrange multipliers associated with the shared constraints. Traditionally, variational equilibria (VE) have been amongst the more well-studied GNE and are characterized by a requirement that the shared constraint multipliers be identical across players. We present and analyze a modification to Lemke’s method that allows us to compute GNE that are not necessarily VE. If successful, the modified method computes a partial variational equilibrium characterized by the property that some shared constraints are imposed to have common multipliers across the players while other are not so imposed. Trajectories arising from regularizing the LCP formulations of AGNEPs are shown to converge to a particular type of GNE more general than Rosen’s normalized equilibrium that in turn includes a variational equilibrium as a special case. A third avenue for constructing alternate GNE arises from employing a novel constraint reformulation and parameterization technique. The associated parametric solution method is capable of identifying continuous manifolds of equilibria. Numerical results suggest that the modified Lemke’s method is more robust than the standard version of the method and entails only a modest increase in computational effort on the problems tested. Finally, we show that the conditions for applying the modified Lemke’s scheme are readily satisfied in a breadth of application problems drawn from communication networks, environmental pollution games, and power markets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpcan, T., Başar, T.: Distributed algorithms for Nash equilibria of flow control games. In: Advances in Dynamic Games, Annals of the International Society of Dynamic Games, vol. 7, pp. 473–498. Birkhäuser, Boston (2003)

  2. Arrow K.J., Debreu G.: Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bunn D.W., Oliveira F.S.: Modeling the impact of market interventions on the strategic evolution of electricity markets. Oper. Res. 56, 1116–1130 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao M., Ferris M.C.: Lineality removal for copositive-plus normal maps. Commun. Appl. Nonlinear Anal. 2, 1–10 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Cao M., Ferris M.C.: A pivotal method for affine variational inequalities. Math. Oper. Res. 21, 44–64 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Contreras, J., Krawczyk, J.B., Zuccollo, J.: Generation games with coupled transmission and emission constraints. In: 2010 7th International Conference on the European Energy Market (EEM), pp. 1–6. (2010)

  7. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. SIAM Classics in Applied Mathematics 60, Philadelphia (2009). [Originally published by Academic Press, Boston (1992)]

  8. Dirkse S.P., Ferris M.C.: The PATH solver: a non-monotone stabilization scheme for mixed complementarity problems. Optim. Methods Softw. 5, 123–156 (1995)

    Article  Google Scholar 

  9. Dreves A., Facchinei F., Kanzow C., Sagratella S.: On the solution of the KKT conditions of generalized Nash equilibrium problems. SIAM J. Optim. 21, 1082–1108 (2010)

    Article  MathSciNet  Google Scholar 

  10. Eaves B.C.: The linear complementarity problem. Manag. Sci. 17, 612–634 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eaves B.C.: Polymatrix games with joint constraints. SlAM J. Appl. Math. 24, 418–423 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eaves, B.C.: A short course in solving equations with PL homotopies. In: Cottle, R.W., Lemke, C.E. (eds.) Nonlinear Programming. SIAM-AMS Proceedings, American Mathematical Society, vol. 9, pp. 73–143. Providence (1976)

  13. Eaves B.C.: Computing stationary points, again. In: Mangasarian, O.L., Meyer, R.R., Robinson, S.M. (eds) Nonlinear Programming, pp. 391–405. Academic Press, New York (1978)

    Google Scholar 

  14. Eaves B.C.: Computing stationary points. Math. Program. Study 7, 1–14 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Facchinei F., Kanzow C.: Generalized Nash equilibrium problems. 4OR 5, 173–210 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Facchinei F., Kanzow C.: Penalty methods for the solution of generalized Nash equilibrium problems. SIAM J. Optim. 20, 2228–2253 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Facchinei F., Pang J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. vols. I and II. Springer, New York (2003)

    Google Scholar 

  18. Facchinei F., Pang J.S.: Nash equilibria: the variational approach. In: Eldar, Y., Palomar, D. (eds) Convex Optimization in Signal Processing and Communications, pp. 443–493. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  19. Ferris M.C., Munson T.S.: Interfaces to PATH 3.0: design, implementation and usage. Comput. Optim. Appl. 12, 207–227 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fukushima M.: Restricted generalized Nash equilibria and controlled penalty algorithm. Comput. Manag. Sci. 8(3), 201–218 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haurie A., Krawczyk J.B.: Optimal charges on river effluent from lumped and distributed sources. Environ. Model. Assess. 2, 93–106 (1997)

    Article  Google Scholar 

  22. von Heusinger, A., Kanzow, C., Fukushima, M.: Newton’s method for computing a normalized equilibrium in the generalized Nash game through fixed point formulation. Math. Program. (2011) in print

  23. Hobbs B.F.: Linear complementarity models of Nash-Cournot competition in bilateral and poolco power markets. IEEE Trans. Power Syst. 16, 194–202 (2001)

    Article  Google Scholar 

  24. Hobbs B.F., Pang J.S.: Nash-Cournot equilibria in electric power markets with piecewise linear demand functions and joint constraints. Oper. Res. 55, 113–127 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jorgensen S., Martín-Herrán G., Zaccour G.: Dynamic games in the economics and management of pollution. Environ. Model. Assess. 15, 433–467 (2010)

    Article  Google Scholar 

  26. Kannan, A., Shanbhag, U.V., Kim, H.M.: Addressing supply-side risk in uncertain power markets: stochastic generalized Nash models, scalable algorithms and error analysis. Optim. Methods Softw (2012). doi:10.1080/10556788.2012.676756

  27. Kannan A., Shanbhag U.V., Kim H.M.: Strategic behavior in power markets under uncertainty. Energy Syst. 2, 115–141 (2011)

    Article  Google Scholar 

  28. Krawczyk J.B.: Coupled constraint Nash equilibria in environmental games. Resour. Energy Econ. 27, 157–181 (2005)

    Article  Google Scholar 

  29. Krawczyk J.B.: Numerical solutions to couple-constraint (or generalized): Nash equilibrium problems. Comput. Manag. Sci. 4, 183–204 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Krawczyk J.B., Uryasev S.: Relaxation algorithms to find Nash equilibria with economic applications. Environ. Model. Assess. 5, 63–73 (2000)

    Article  Google Scholar 

  31. Kubota K., Fukushima M.: Gap function approach to the generalized Nash equilibrium problem. J. Optim. Theory Appl. 144, 511–531 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kukarni A.A., Shanbhag U.V.: On the variational equilibrium as a refinement of the generalized Nash equilibrium. Automatica 48, 45–55 (2012)

    Article  Google Scholar 

  33. Kukarni A.A., Shanbhag U.V.: Revisiting generalized Nash games and variational inequalities. J. Optim. Theory Appl. 154(1), 1–12 (2012)

    Article  MathSciNet  Google Scholar 

  34. Lemke C.E.: Bimatrix equilibrium points and mathematical programming. Manag. Sci. 11, 681–689 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  35. Metzler C., Hobbs B.F., Pang J.S.: Nash-cournot equilibria in power markets on a linearized dc network with arbitrage: formulations and properties. Netw. Spatial Theory 3, 123–150 (2003)

    Article  Google Scholar 

  36. Myerson R.B.: Game Theory: Analysis of Conflict. Harvard University Press, Cambridge (1997)

    Google Scholar 

  37. Myerson R.B.: Refinements of the Nash equilibrium concept. Int. J. Game Theory 7, 73–80 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nabetani K., Tseng P., Fukushima M.: Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints. Comput. Optim. Appl. 48(3), 423–452 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nash J.F. Jr: Equilibrium points in n-person games. Proc. Nat. Acad. Sci. 36, 48–49 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nash J.F. Jr: Non-cooperative games. Ann. Math. 54, 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nisan N., Roughgarden T., Tardos E., Vazirani V.V.: Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  42. Orda A., Rom R., Shimkin N.: Competitive routing in multiuser communication networks. IEEE ACM Trans. Netw. 1, 510–521 (1993)

    Article  Google Scholar 

  43. Pan Y., Pavel L.: Games with coupled propagated constraints in optical network with multi-link topologies. Automatica 45, 871–880 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pang, J.S.: Computing generalized Nash equilibria. Unpublished manuscript (2002). Available on request from the author

  45. Pang, J.S., Fukushima, M.: Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput. Manag. Sci. 2, 21–56 (2005). [Erratum, ibid. 6, 373–375 (2009)]

    Google Scholar 

  46. Pang J.S., Han L., Ramadurai G., Ukkusuri S.: A continuous-time dynamic equilibrium model for multi-user class single bottleneck traffic flows. Math. Program. 133(1–2), 437–460 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pang J.S., Scutari G.: Nonconvex games with side constraints. SIAM J. Optim. 21(4), 1491–1522 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Pang J.S., Sun J.: Nash-Cournot equilibria with piecewise quadratic costs. Pac. J. Optim. 2, 679–692 (2006)

    MathSciNet  MATH  Google Scholar 

  49. Pavel L.: A noncooperative game approach to OSNR optimization in optical networks. IEEE Trans. Autom. Control 51, 848–852 (2006)

    Article  MathSciNet  Google Scholar 

  50. Rosen J.: Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33, 520–534 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  51. Selten R.: Reexamination of the perfectness concept for equilibrium points in extensive games. Int. J. Game Theory 4, 25–55 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tidball M., Zaccour G.: An environmental game with coupling constraints. Environ. Model. Assess. 10, 153–158 (2005)

    Article  Google Scholar 

  53. Wei T.Y., Smeers Y.: Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices. Oper. Res. 47, 102–112 (1999)

    Article  MATH  Google Scholar 

  54. Yin H., Shanbhag U.V., Mehta P.G.: Nash equilibrium problems with scaled congestion costs and shared constraint. IEEE Trans. Autom. Control 56, 1702–1708 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Shi Pang.

Additional information

This work was based on research partially supported by the National Science Foundation under grant CMMI-0969600 and the Department of Energy under grant DOE DE-SC0003879.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiro, D.A., Pang, JS. & Shanbhag, U.V. On the solution of affine generalized Nash equilibrium problems with shared constraints by Lemke’s method. Math. Program. 142, 1–46 (2013). https://doi.org/10.1007/s10107-012-0558-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-012-0558-3

Mathematics Subject Classification

Navigation