Skip to main content
Log in

Maximal quasimonotonicity and dense single-directional properties of quasimonotone operators

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

The concept of maximal quasimonotonicity of set-valued map is introduced and studied. Regularity properties of this class of operators is investigated, in particular the ccvc property, an adaptation to the quasimonotone case of the classical notion of cusco map. In an Asplund space, we provide sufficient conditions for a ccvc quasimonotone operator to be single-directional on a \(G_\delta \)-dense subset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ansari, Q.H., Schaible, S., Yao, J.C.: Generalized vector quasi-variational inequality problems over product sets. J. Global Optim. 32(4), 437–449 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aussel, D., Cotrina, J.: Quasimonotone quasi-variational inequality: existence and applications. J. Optim. Theory Appl. doi:10.1007/s10957-013-0270-3

  3. Aussel, D., Corvellec, J.-N., Lassonde, M.: Mean value property and subdifferential criteria for lower semicontinuous functions. Trans. Am. Math. Soc. 347, 4147–4161 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aussel, D., Corvellec, J.-N., Lassonde, M.: Subdifferential characterization of quasiconvexity and convexity. J. Convex Anal. 1(2), 195–201 (1994)

    MathSciNet  MATH  Google Scholar 

  5. Aussel, D., Daniilidis, A.: Normal cones to sublevel sets: an axiomatic approach. Applications in quasiconvexity and pseudoconvexity. In: Proceedings of the 6th International Symposium on Generalized Convexity/Monotonicity, Lecture Notes in Economics and Mathematical Systems, Ed. Springer, no. 502, 88–101 (2001)

  6. Aussel, D., Hadjisavvas, N.: Adjusted sublevel sets, normal operator and quasiconvex programming. SIAM J. Optim. 16, 358–367 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aussel, D., Hadjisavvas, N., Garcia, Y.: Single-directional property of multivalued maps and variational systems. SIAM Optim. 20, 1274–1285 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aussel, D., Ye, J.: Quasiconvex programming with starshaped constraint region and application to quasiconvex MPEC. Optimization 55, 433–457 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berge, C.: Topological Spaces. Macmillan, New York (1963)

    MATH  Google Scholar 

  10. Borwein, J.: Minimal CUSCOS and subgradients of Lipschitz functions. Fixed point theory and applications (Marseille, 1989), Pitman Res. Notes Math. Ser., 252, Longman Sci. Tech., Harlow, 57–81 (1991)

  11. Borwein, J.: Essentially smooth lipschitz functions. J. Funct. Anal. 149, 305–351 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Borwein, J.: Fifty years of maximal monotonicity. Optim. Lett. 4, 473–490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Borwein, J., Fitzpatrick, S., Kenderov, P.: Minimal convex uscos and monotone operators on small sets. Can. J. Math. 43(3), 461–476 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Borwein, J., Lewis, A.S.: Convex Analysis and Nonlinear Optimization. Theory and Examples, Second edition, CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, 3, Springer, New York (2006)

  15. Borwein, J., Lucet, Y., Mordukovich, B.: Compactly Epi-Lipschitzian convex sets and functions in normed spaces. J. Convex Anal. 7(2), 375–393 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Clarke, F.: Optimization and Non-Smooth Analysis. Wiley Interscience, New York (1983). (Re-published in 1990: Vol. 5, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, Pa.)

    Google Scholar 

  17. Crouzeix, J.-P.: A review of continuity and differentiability properties of quasiconvex functions on \(\mathbb{R}^{n}\), convex analysis and optimization (London, 1980), Res. Notes in Math., 57, Pitman, Boston, 18–34 (1982)

  18. Eberhard, A.C., Ralph, D., Crouzeix, J.-P.: A constructive proof of the existence of a utility in revealed preference theory. Math. Oper. Res. http://www.optimization-online.org/DB_HTML/2012/02/3350.html

  19. Eberhard, A.C., Crouzeix, J.-P.: Existence of closed graph, maximal, cyclic pseudo-monotone relations and revealed preference theory. J. Ind. Manag. Optim. 3(2), 233–255 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Giles, J., Moors, W.: A continuity property related to Kurastowski’s index of non-compactness, its relevance to the drop property and its implications for differentiability theory. J. Math. Anal. Appl. 178, 247–268 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hadjisavvas, N.: Continuity and maximality properties of Pseudo-monotone operators. J. Convex Anal. 10, 459–469 (2003)

    Google Scholar 

  22. Hadjisavvas, N.: Operators, Maximal Pseudomonotone, Advances, Recent, in Optimization (Varese, 2000) Datanova, Milan, 87–100 (2003)

  23. Holmes, R.B.: Geometric Functional Analysis and its Applications. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  24. Kenderov, A.: Semi-continuity of the set-valued mapping. Fundam. Math. 88, 61–69 (1975)

    MathSciNet  MATH  Google Scholar 

  25. Lassonde, M.: Asplund spaces, stegall variational principle and the RNP. Set-Valued Var. Anal. 17(2), 183–193 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Loewen, P.D.: Limits of frechet normal cones in nonsmooth analysis, in optimization and nonsmooth analysis (Haifa 1990), 244, Pitman Res., Longman Sci. Tech., Harlow, 178–188 (1992)

  27. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability, second edition, Lecture Notes in Mathematics, no. 1364, Springer, Berlin (1992)

  28. Simons, S.: From Hahn-Banach to Monotonicity. Second edition, Lecture Notes in Mathematics, 1693. Springer, New York (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Aussel.

Additional information

The research of the second author was supported by the ARC Discovery grant no. DP0987445.

Dedicated to Jonathan Borwein on the occassion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aussel, D., Eberhard, A. Maximal quasimonotonicity and dense single-directional properties of quasimonotone operators. Math. Program. 139, 27–54 (2013). https://doi.org/10.1007/s10107-013-0658-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0658-8

Keywords

Mathematics Subject Classification (2000)