Skip to main content
Log in

Semicontinuous limits of nets of continuous functions

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper we present a topology on the space of real-valued functions defined on a functionally Hausdorff space \(X\) that is finer than the topology of pointwise convergence and for which (1) the closure of the set of continuous functions \(\mathcal{C }(X)\) is the set of upper semicontinuous functions on \(X\), and (2) the pointwise convergence of a net in \(\mathcal{C }(X)\) to an upper semicontinuous limit automatically ensures convergence in this finer topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandroff, P.: Einführing in die Mengenlehre und die theorie der rellen Funktionen. Deutscher Verlag der Wissenschaften, Berlin (1964)

    Google Scholar 

  2. Arzelà, C. : Intorno alla continuá della somma di infinitá di funzioni continue. Rend. R. Accad. Sci. Istit. Bologna, 79–84 (1883/1884)

  3. Attouch, H.: Variational Convergence for Functions and Operators. Pitman, Boston (1984)

    MATH  Google Scholar 

  4. Bartle, R.: On compactness in functional analysis. Trans. Am. Math. Soc. 79, 35–57 (1955)

    Article  MathSciNet  Google Scholar 

  5. Beer, G.: Topologies on Closed and Closed Convex Sets. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  6. Beer, G.: The Alexandroff property and the preservation of strong uniform continuity. Appl. Gen. Top. 11, 117–133 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Beer, G., Levi, S.: Strong uniform continuity. J. Math. Anal. Appl. 350, 568–589 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borwein, J., Lewis, A.: Convex Analysis and Nonlinear Optimization, CMS Books in Mathematics. Springer, New York (2006)

    Book  Google Scholar 

  9. Borwein, J., Thera, M.: Sandwich theorems for semicontinuous operators. Can. Math. Bull. 35, 463–474 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Borwein, J., Vanderwerff, J.: Epigraphical and uniform convergence of convex functions. Trans. Am. Math. Soc. 348, 1617–1631 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bouleau, N.: Une structure uniforme sur un espace \(F(E, F)\). Cahiers Topologie Géom. Diff. 11, 207–214 (1969)

    MathSciNet  Google Scholar 

  12. Bouleau, N., On the coarsest topology preserving continuity (preprint) (2006)

  13. Bourbaki, N.: Topologie générale, Chapter IX. Hermann, Paris (1948)

    Google Scholar 

  14. Caserta, A., Di Maio, G., Holá, Ľ.: Arzelà’s theorem and strong uniform convergence on bornologies. J. Math. Anal. Appl. 371, 384–392 (2010)

    Google Scholar 

  15. Engelking, R.: General Topology. Polish Scientific Publishers, Warsaw (1977)

    MATH  Google Scholar 

  16. Fletcher, P., Lindgren, W.: Quasi-uniform spaces, Lecture Notes Pure Appl. Math. No. 77, Marcel Dekker, New York (1982)

  17. Kelley, J.: General Topology. Van-Nostrand, Princeton (1955)

    MATH  Google Scholar 

  18. Künzi, H.: Quasi-uniform spaces—eleven years later. Topol. Proc. 18, 143–171 (1993)

    MATH  Google Scholar 

  19. Lucchetti, R.: Convexity and Well-Posed Problems CMS Books in Mathematics. Springer, New York (2006)

    Google Scholar 

  20. McCoy, R., Ntantu, I.: Topological Properties of Spaces of Continuous Functions. Springer, Berlin (1988)

    MATH  Google Scholar 

  21. Pervin, W.: Quasi-uniformization of topological spaces. Math. Ann. 147, 316–317 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rockafellar, R., Wets, R.: Variational analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  23. Tong, H.: Some characterizations of normal and perfectly normal space. Duke Math. J. 19, 289–292 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  24. Willard, S.: General Topology. Addison-Wesley, Reading (1970)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Beer.

Additional information

Dedicated to Jonathan Borwein on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beer, G. Semicontinuous limits of nets of continuous functions. Math. Program. 139, 71–79 (2013). https://doi.org/10.1007/s10107-013-0660-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0660-1

Keywords

Mathematics Subject Classification (2000)

Navigation