Skip to main content
Log in

Passivity and complementarity

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper studies the interaction between the notions of passivity of systems theory and complementarity of mathematical programming in the context of complementarity systems. These systems consist of a dynamical system (given in the form of state space representation) and complementarity relations. We study existence, uniqueness, and nature of solutions for this system class under a passivity assumption on the dynamical part. A complete characterization of the initial states and the inputs for which a solution exists is given. These initial states are called consistent states. For the inconsistent states, we introduce a solution concept in the framework of distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. See also [5, 7] for ‘passive-like’ systems with the property that \(KB=C^T\) for some positive definite matrix \(K\).

References

  1. Brogliato, B.: Some perspectives on the analysis and control of complementarity systems. IEEE Trans. Autom. Control 48(6), 918–935 (2003)

    Article  MathSciNet  Google Scholar 

  2. Brogliato, B.: Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings. Syst. Control Lett. 51(5), 343–353 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brogliato, B.: Some results on the controllability of planar evolution variational inequalities. Syst. Control Lett. 54, 65–71 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brogliato, B., Daniilidis, A., Lemaréchal, C., Acary, V.: On the equivalence between complementarity systems, projected systems and unilateral differential inclusions. Syst. Control Lett. 55(1), 45–51 (2006)

    Article  MATH  Google Scholar 

  5. Brogliato, B., Goeleven, D.: Well-posedness, stability and invariance results for a class of multivalued lure dynamical systems. Nonlinear Anal. Theory Methods Appl. 74, 195–212 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brogliato, B., Lozano, R., Egeland, O., Maschke, B.: Dissipative Systems Analysis and Control: Theory and Applications, 2nd edn. Communications and Control Engineering Series. Springer, London (2007)

  7. Brogliato, B., Thibault, L.: Existence and uniqueness of solutions for non-autonomous complementarity dynamical systems. J. Convex Anal. 17(3–4), 961–990 (2010)

    MATH  MathSciNet  Google Scholar 

  8. Camlibel, M.K.: Complementarity methods in the analysis of piecewise linear dynamical systems. PhD thesis, Dissertation series of Center for Economic Research, Tilburg University, The Netherlands, 2001 (ISBN: 90 5668 079 X)

  9. Camlibel, M.K.: Popov-Belevitch-Hautus type tests for the controllability of linear complementarity systems. Syst. Control Lett. 56(5), 381–387 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Camlibel, M.K., Heemels, W.P.M.H., van der Schaft, A.J., Schumacher, J.M.: Switched networks and complementarity. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50(8), 1036–1046 (2003)

    Article  MathSciNet  Google Scholar 

  11. Camlibel, M.K., Heemels, W.P.M.H., Schumacher, J.M.: On the controllability of bimodal piecewise linear systems. In: Alur, R., Pappas, G.J. (eds.) Hybrid Systems: Computation and Control. LNCS 2993, pp. 250–264. Springer, Berlin (2004)

  12. Camlibel, M.K., Heemels, W.P.M.H., Schumacher, J.M.: Algebraic necessary and sufficient conditions for the controllability of conewise linear systems. IEEE Trans. Autom. Control 53(3), 762–774 (2008)

    Google Scholar 

  13. Camlibel, M.K., Heemels, W.P.M.H., Schumacher, J.M.: On linear passive complementarity systems. Eur. J. Control 8(3), 220–237 (2002)

    Article  Google Scholar 

  14. Camlibel, M.K., Heemels, W.P.M.H., Schumacher, J.M.: A full characterization of stabilizability of bimodal piecewise linear systems with scalar inputs. Automatica 44(5), 1261–1267 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Camlibel, M.K., Pang, J.-S., Shen, J.: Conewise linear systems: non-zenoness and observability. SIAM J. Control Optim. 45(5), 1769–1800 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Camlibel, M.K., Pang, J.S., Shen, J.: Lyapunov stability of complementarity and extended systems. SIAM J. Optim. 17(4), 1056–1101 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992)

    MATH  Google Scholar 

  18. Goeleven, D., Brogliato, B.: Stability and instability matrices for linear evolution variational inequalities. IEEE Trans. Autom. Control 49(4), 521–534 (2004)

    Article  MathSciNet  Google Scholar 

  19. Heemels, W.P.M.H.: Linear complementarity systems: a study in hybrid dynamics. PhD thesis, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands (1999)

  20. Heemels, W.P.M.H., Brogliato, B.: The complementarity class of hybrid dynamical systems. Eur. J. Control 26(4), 651–677 (2003)

    Google Scholar 

  21. Heemels, W.P.M.H., Camlibel, M.K., van der Schaft, A.J., Schumacher, J.M.: Modelling, well-posedness, and stability of switched electrical networks. In: Maler, O., Pnueli, A. (eds.) Hybrid Systems: Computation and Control. LNCS 2623, pp. 249–266. Springer, Berlin (2003)

  22. Heemels, W.P.M.H., Camlibel, M.K., Schumacher, J.M.: On the dynamic analysis of piecewise-linear networks. EEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(3), 315–327 (2002)

    Article  MathSciNet  Google Scholar 

  23. Heemels, W.P.M.H., Schumacher, J.M., Weiland, S.: The rational complementarity problem. Linear Algebra Appl. 294(1–3), 93–135 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Heemels, W.P.M.H., Schumacher, J.M., Weiland, S.: Linear complementarity systems. SIAM J. Appl. Math. 60(4), 1234–1269 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Mangasarian, O.L.: Nonlinear Programming. McGraw-Hill, New York (1969)

    MATH  Google Scholar 

  26. McCollum, P.A., Brown, B.F.: Laplace Transform Tables and Theorems. Holt Rinehart and Winston, New York (1965)

    Google Scholar 

  27. Moreau, J.J.: Quadratic programming in mechanics: dynamics of one-sided constraints. SIAM J. Control 4, 153–158 (1966)

    Google Scholar 

  28. Moreau, J.J.: Liaisons unilaterales sans frottement et chocs inelastiques. C. R. Acad. Sci. Paris Ser. II 296(19), 1473–1476 (1983)

    MATH  MathSciNet  Google Scholar 

  29. Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Nonsmooth Mechanics and Applications. CISM Courses and Lectures, vol. 302, pp. 1–82. Springer, Wien, New York (1988)

  30. Pang, J.S., Stewart, D.E.: Solution dependence on initial conditions in differential variational inequalities. Math. Program. B 116, 429–460 (2007)

    Article  MathSciNet  Google Scholar 

  31. Pang, J.S., Stewart, D.E.: Differential variational inequalities. Math. Program. A 113(2), 345–424 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  33. Schumacher, J.M.: Complementarity systems in optimization. Math. Program. Ser. B 101, 263–295 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  34. Schwartz, L.: Théorie des Distributions. Herman, Paris (1978)

    MATH  Google Scholar 

  35. Shen, J., Pang, J.S.: Linear complementarity systems: zeno states. SIAM J. Control Optim. 44(3), 1040–1066 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Shen, J., Pang, J.S.: Strongly regular differential variational systems. IEEE Trans. Autom. Control 52(2), 242–255 (2007)

    Article  MathSciNet  Google Scholar 

  37. Stoer, J., Witzgall, C.: Convexity and Optimization in Finite Dimensions I. Springer, Berlin (1970)

    Book  Google Scholar 

  38. Trentelman, H.L., Stoorvogel, A.A., Hautus, M.L.J.: Control Theory for Linear Systems. Springer, London (2001)

    Book  MATH  Google Scholar 

  39. van der Schaft, A.J., Schumacher, J.M.: The complementary-slackness class of hybrid systems. Math. Control Signals Syst. 9, 266–301 (1996)

    Article  MATH  Google Scholar 

  40. van der Schaft, A.J., Schumacher, J.M.: Complementarity modelling of hybrid systems. IEEE Trans. Autom. Control 43(4), 483–490 (1998)

    Article  MATH  Google Scholar 

  41. van der Schaft, A.J., Schumacher, J.M.: An Introduction to Hybrid Dynamical Systems. Springer, London (2000)

    MATH  Google Scholar 

  42. Willems, J.C.: Dissipative dynamical systems. Arch. Ration. Mech. Anal. 45, 321–393 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  43. Zhang, J., Johansson, K.H., Lygeros, J., Sastry, S.: Zeno hybrid systems. Int. J. Robust Nonlinear Control 11, 435–451 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Camlibel.

Appendices

Appendix 1: Quadratic programming

Theorem 11

Let \(Q\) be a symmetric nonnegative definite matrix. Consider the following three quadratic programs

$$\begin{aligned}&\mathrm{minimize}\ \frac{1}{2}x^T Q x+b^Tx \ \mathrm{subject\ to}\ x\geqslant 0 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \! (\textit{QP}_1) \\&\mathrm{minimize}\ \frac{1}{2}x^T Q x+b^Tx \ \mathrm{subject\ to}\ Ax\geqslant c \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \! (\textit{QP}_2)\\&\mathrm{minimize}\ \frac{1}{2}x^T Q x-c^Tu\ \mathrm{subject\ to}\ A^Tu-Qx=b \text{ and } u\geqslant 0. \qquad \qquad \qquad \quad (\textit{QP}_3) \end{aligned}$$

The following statements hold.

  1. 1.

    Karush-Kuhn-Tucker conditions

    $$\begin{aligned}&x\geqslant 0\\&b+Qx\geqslant 0\\&x^T(b+Qx)=0 \end{aligned}$$

    are necessary and sufficient for the vector \(x\) to be globally optimal solution of the quadratic program \((QP_1)\).

  2. 2.

    (Dorn’s duality theorem) [25, Theorem 8.2.4] If \({\bar{x}}\) solves \((QP_2)\) then there exists \({\bar{u}}\) such that \(({\bar{x}},{\bar{u}})\) solves \((QP_3)\). Moreover, the two extrema are equal.

  3. 3.

    (Dorn’s converse duality theorem) [25, Theorem 8.2.6] If \(({\bar{x}},{\bar{u}})\) solves \((QP_3)\) then there exists \({\hat{x}}\) with \(Q{\hat{x}}=Q{\bar{x}}\) such that \({\hat{x}}\) solves \((QP_2)\).

Appendix 2: Geometric control theory

Consider the linear system

$$\begin{aligned} \dot{x}(t)&= Ax(t)+Bu(t)\\ y(t)&= Cx(t)+Du(t) \end{aligned}$$

where \(x\in \mathbb{R }^n\), \(u\in \mathbb{R }^m\), \(y\in \mathbb{R }^p\), and all involved matrices are of appropriate dimensions. A subspace \(\mathcal V \subseteq \mathbb{R }^n\) is said to be an output-nulling controlled-invariant subspace if there exists \(L\in \mathbb{R }^{m\times n}\) such that

$$\begin{aligned} (A+BL)\mathcal V \subseteq \mathcal V \quad \text{ and } \quad (C+DL)\mathcal V =\{0\}. \end{aligned}$$

Since the set of all such subspaces are closed under subspace sum and intersection, there exists a unique subspace \(\mathcal V ^*\) such that

$$\begin{aligned} \mathcal V \subseteq \mathcal V ^* \end{aligned}$$

holds whenever \(\mathcal V \) is an output-nulling controlled invariant subspace. We call \(\mathcal V ^*\) the largest output-nulling controlled invariant subspace and define

$$\begin{aligned} \mathcal{L }=\{L\mid (A+BL)\mathcal V ^*\subseteq \mathcal V ^* \text{ and } (C+DL)\mathcal V ^*=\{0\}\}. \end{aligned}$$

The following result (see e.g. [38, Theorem 7.11]) establishes a link between such subspaces and the so-called zero dynamics of linear systems.

Theorem 12

The pair \((u,x)\) satisfies the differential algebraic equations

$$\begin{aligned} \dot{x}(t)&= Ax(t)+Bu(t)\\ 0&= Cx(t)+Du(t) \end{aligned}$$

if and only if \(x(0)\in \mathcal V ^*\) and the input \(u\) has the form \(u(t)=Lx(t)+v(t)\) where \(L\in \mathcal{L }\), \(v(t)\in \ker D\cap B^{-1}\mathcal V ^*\) for almost all \(t\), and \(B^{-1}\mathcal V ^*=\{\bar{v}\mid B\bar{v}\in \mathcal V ^*\}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camlibel, M.K., Iannelli, L. & Vasca, F. Passivity and complementarity. Math. Program. 145, 531–563 (2014). https://doi.org/10.1007/s10107-013-0678-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0678-4

Mathematics Subject Classification

Navigation