Skip to main content

Advertisement

Log in

Hidden conic quadratic representation of some nonconvex quadratic optimization problems

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

The problem of minimizing a quadratic objective function subject to one or two quadratic constraints is known to have a hidden convexity property, even when the quadratic forms are indefinite. The equivalent convex problem is a semidefinite one, and the equivalence is based on the celebrated S-lemma. In this paper, we show that when the quadratic forms are simultaneously diagonalizable (SD), it is possible to derive an equivalent convex problem, which is a conic quadratic (CQ) one, and as such is significantly more tractable than a semidefinite problem. The SD condition holds for free for many problems arising in applications, in particular, when deriving robust counterparts of quadratic, or conic quadratic, constraints affected by implementation error. The proof of the hidden CQ property is constructive and does not rely on the S-lemma. This fact may be significant in discovering hidden convexity in some nonquadratic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albers, C.J.: Some quadratic optimisation problems in psychometrics. Department of Statistics, The Open University, Walton Hall, Milton Keynes MK6 7AA, United Kingdom, Working Paper (2008)

  2. Ben-Tal, A., Teboulle, M.: Hidden convexity in some nonconvex quadratically constrained quadratic programming. Math. Program. 72, 51–63 (1995)

    MathSciNet  Google Scholar 

  3. Ben-Tal, A., El-Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton Series in Applied Mathematics (2009)

  4. Bertsimas, D., Nohadani, O., Teo, K.M.: Robust optimization for unconstrained simulation-based problems. Oper. Res. 58(1), 161–178 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  6. Golub, G.H., van Loan, C.F.: Matrix Computations, 2nd edn. Johns Hopkins University Press, London, UK (1989)

    MATH  Google Scholar 

  7. Hmam, H.: Quadratic optimisation with one quadratic equality constraint. Electronic Warfare and Radar Division DSTO Defence Science and Technology Organisation, Australia, Report DSTO-TR-2416 (2010)

  8. Jeyakumar, V., Lee, G.M., Li, G.Y.: Alternative theorems for quadratic inequality systems and global quadratic optimization. SIAM J. Optim. 20, 983–1001 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lahanas, M., Schreibmann, E., Baltas, D.: Multiobjective inverse planning or intensity modulated radiotherapy with constraint-free gradient-based optimization algorithms. Phys. Med. Biol. 48(17), 2843–2871 (2003)

    Article  Google Scholar 

  10. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1–3), 193–228 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Martin, R.S., Heiberger, J.H.: Reduction of a symmetric eigenproblem \(Ax = \lambda Bx\) and related problems to standard form. Numerische Mathematik 11, 99–110 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  12. Milickovic, N., Lahanas, M., Papagiannopoulou, M., Zamboglou, N., Baltas, D.: Multiobjective anatomy-based dose optimization for HDR-brachytherapy with constraint free deterministic algorithms. Phys. Med. Biol. 47(13), 2263–2280 (2002)

    Article  Google Scholar 

  13. Moré, J.J.: Generalization of the trust region problem. Optim. Methods Softw. 2, 189–209 (1993)

    Article  Google Scholar 

  14. Myers, R.H., Montgomery, D.C.: Response Surface Methodology, 2nd edn. Wiley Series in Probability and Statistics (2002)

  15. Nesterov, Y.E.: Semidefinite relaxation and nonconvex quadratic optimization. Optim. Methods Softw. 9, 141–160 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Palanthandalam-Madapusi, H.J., Van Pelt, T.H., Bernstein, D.S.: Matrix pencils and existence conditions for quadratic programming with a sign-indefinite quadratic equality constraint. J. Global Optim. 45(4), 533–549 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Polik, I., Terlaky, T.: A survey of the S-lemma. SIAM Rev. 49(3), 371–418 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Stern, R.J., Wolkowicz, H.: Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations. SIAM J. Optim. 5, 286–313 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Stinstra, E., den Hertog, D.: Robust optimization using computer experiments. Eur. J. Oper. Res. 191(3), 816–837 (2008)

    Article  MATH  Google Scholar 

  20. Sturm, J.F., Zhang, S.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28(2), 246–267 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tan, Y., Deng, C.: Solving for a quadratic programming with a quadratic constraint based on a neural network frame, Ying Tan, Chao Deng. Neurocomputing 30, 117–128 (2000)

    Article  Google Scholar 

  22. Uhlig, F.: Definite and semidefinite matrices in a real symmetric matrix pencil. Pac. J. Math. 49(2), 561–568 (1972)

    Article  MathSciNet  Google Scholar 

  23. Ye, Y.: Approximating quadratic programming with bound and quadratic constraints. Math. Program. 84, 219–226 (1999)

    MATH  MathSciNet  Google Scholar 

  24. Ye, Y., Zhang, S.: New results on quadratic minimization. SIAM J. Optim. 14(1), 245–267 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yuan, Y.: On a subproblem of trust region algorithms for constrained optimization. Math. Program. 47, 53–63 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Ben-Tal.

Additional information

This paper was written when the first author was visiting Centrum Wiskunde & Informatica in Amsterdam, The Netherlands, as a CWI Distinguished Scientist. He is also supported by Israel-USA Science Foundation (DSF) Grant number 2008302.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Tal, A., den Hertog, D. Hidden conic quadratic representation of some nonconvex quadratic optimization problems. Math. Program. 143, 1–29 (2014). https://doi.org/10.1007/s10107-013-0710-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-013-0710-8

Keywords

Mathematics Subject Classification (2000)