Skip to main content
Log in

The numerical solution of Newton’s problem of least resistance

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper we consider Newton’s problem of finding a convex body of least resistance. This problem could equivalently be written as a variational problem over concave functions in \({\mathbb {R}}^{2}\). We propose two different methods for solving it numerically. First, we discretize this problem by writing the concave solution function as a infimum over a finite number of affine functions. The discretized problem could be solved by standard optimization software efficiently. Second, we conjecture that the optimal body has a certain structure. We exploit this structure and obtain a variational problem in \({\mathbb {R}}^{1}\). Deriving its Euler–Lagrange equation yields a program with two unknowns, which can be solved quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. All computations were done using a computer with two Intel Xeon Dual Core CPU (\(4 \times 3.0\,\text {GHz}\)) with \(16\,\text {GB}\) RAM.

References

  1. Aguilera, N.E., Morin, P.: Approximating optimization problems over convex functions. Numer. Math. 111(1), 1–34 (2008). ISSN 0029-599X. doi:10.1007/s00211-008-0176-4

    Google Scholar 

  2. Aguilera, N.E., Morin, P.: On convex functions and the finite element method. SIAM J. Numer. Anal. 47(4), 3139–3157 (2009). ISSN 0036-1429. doi:10.1137/080720917

    Google Scholar 

  3. Boissonnat, J.-D., Wormser, C., Yvinec, M.: Curved voronoi diagrams. In: Boissonnat, J.-D., Teillaud, M. (eds.) Effective Computational Geometry for Curves and Surfaces, pp. 67–116 (2006). doi:10.1007/978-3-540-33259-6-2

  4. Brock, F., Ferone, V., Kawohl, B.: A symmetry problem in the calculus of variations. Calc. Var. Partial Differ. Equ. 4(6), 593–599 (1996). doi:10.1007/BF01261764

    Article  MathSciNet  MATH  Google Scholar 

  5. Buttazzo, G., Kawohl, B.: On Newton’s problem of minimal resistance. Math. Intell. 15(4), 7–12 (1993). doi:10.1007/BF03024318

    Article  MathSciNet  MATH  Google Scholar 

  6. Buttazzo, G., Ferone, V., Kawohl, B.: Minimum problems over sets of concave functions and related questions. Math. Nachr. 173, 71–89 (1995). doi:10.1002/mana.19951730106

    Article  MathSciNet  MATH  Google Scholar 

  7. Carlier, G., Lachand-Robert, T., Maury, B.,:\(H^1\)-projection into the set of convex functions: a saddle-point formulation. In: CEMRACS 1999 (Orsay), Volume 10 of ESAIM Proceedings, pp. 277–289. Soc. Math. Appl. Indust., Paris (1999) (electronic). doi:10.1051/proc:2001017

  8. Carlier, G., Lachand-Robert, T., Maury, B.: A numerical approach to variational problems subject to convexity constraint. Numer. Math. 88(2), 299–318 (2001). ISSN 0029-599X. doi:10.1007/PL00005446

    Google Scholar 

  9. CGAL. Computational Geometry Algorithms Library. http://www.cgal.org

  10. Ekeland, I., Moreno-Bromberg, S.: An algorithm for computing solutions of variational problems with global convexity constraints. Numer. Math. 115(1), 45–69 (2010). ISSN 0029-599X. doi:10.1007/s00211-009-0270-2

  11. Lachand-Robert, T., Oudet, É.: Minimizing within convex bodies using a convex hull method. SIAM J. Optim. 16(2), 368–379 (2005) (electronic). ISSN 1052-6234. doi:10.1137/040608039

    Google Scholar 

  12. Lachand-Robert, T., Peletier, M.A.: Newton’s problem of the body of minimal resistance in the class of convex developable functions. Math. Nachr. 226, 153–176 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Oberman, A.: A numerical method for variational problems with convexity constraints. SIAM J. Sci. Comput. 35(1), A378–A396 (2013). doi:10.1137/120869973

    Article  MathSciNet  MATH  Google Scholar 

  14. Yvinec, M.: 2D triangulations. In: CGAL User and Reference Manual. CGAL Editorial Board, 4.1 edn. (2012) http://www.cgal.org/Manual/4.1/doc_html/cgal_manual/packages.html#Pkg:Triangulation2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Wachsmuth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wachsmuth, G. The numerical solution of Newton’s problem of least resistance. Math. Program. 147, 331–350 (2014). https://doi.org/10.1007/s10107-014-0756-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0756-2

Mathematics Subject Classification

Navigation