Abstract
We introduce computable a priori and a posteriori error bounds for optimality and feasibility of a point generated as the rounding of an optimal point of the LP relaxation of a mixed integer linear optimization problem. Treating the mesh size of integer vectors as a parameter allows us to study the effect of different “granularities” in the discrete variables on the error bounds. Our analysis mainly bases on a global error bound for mixed integer linear problems constructed via a so-called grid relaxation retract. Relations to proximity results, the integer rounding property, and binary analytic problems are highlighted.


Similar content being viewed by others
References
Auslender, A., Crouzeix, J.-P.: Global regularity theorems. Math. Oper. Res. 13, 243–253 (1988)
Baum, S.P., Trotter Jr. L.E.: Integer rounding for polymatroid and branching optimization problems. SIAM J. Algebraic Discrete Methods 2, 416–425 (1981)
Bergthaller, C., Singer, I.: The distance to a polyhedron. Linear Algebra Appl. 169, 111–129 (1992)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (1994)
Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, É.: Sensitivity theorems in integer linear programming. Math. Program. 34, 251–264 (1986)
Deng, S.: Computable error bounds for convex inequality systems in reflexive Banach Spaces. SIAM J. Optim. 7, 274279 (1997)
Eisenbrand, F., Hähnle, N., Pálvölgyi, D., Shmonin, G.: Testing additive integrality gaps. Math. Program. 141, 257–271 (2013)
Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds) 50 Years of Integer Programming 1958–2008: From the Early Years to the State-of-the-Art. Springer, Berlin (2010)
Giles, F.R., Orlin, J.B.: Verifying total dual integrality. Manuscript (1981)
Granot, F., Skorin-Kapov, J.: Some proximity and sensitivity results in quadratic integer programming. Math. Program. 47, 259–268 (1990)
Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)
Güler, O., Hoffman, A.J., Rothblum, U.G.: Approximations to solutions to systems of linear inequalities. SIAM J. Matrix Anal. Appl. 16, 688–696 (1995)
Hillier, F.S., Lieberman, G.J.: Introduction to Operations Research. McGraw-Hill, New York (2005)
Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Natl. Bur. Stand. 49, 263–265 (1952)
Klatte, D.: Eine Bemerkung zur parametrischen quadratischen Optimierung. Seminarbericht Nr. 50, Sektion Mathematik der Humboldt-Universität zu Berlin, pp. 174–185 (1983)
Klatte, D., Thiere, G.: Error bounds for solutions of linear equations and inequalities. Math. Methods Oper. Res. 41, 191–214 (1995)
Lewis, A.S., Pang, J.-S.: Error bounds for convex inequality systems. In: Crouzeix, J.P., Martinez-Legaz, J.E., Volle, M. (eds.) Generalized Convexity, Generalized Monotonicity: Recent Results, pp. 75–110. Kluwer Academic Publishers, Boston (1996)
Li, G.: Global error bounds for piecewise convex polynomials. Math. Program. 137, 3764 (2013)
Li, G., Mordukhovich, B.S., Pham, T.S.: New fractional error bounds for polynomial systems with applications to Hölderian stability in optimization and spectral theory of tensors. Math. Program. doi:10.1007/s10107-014-0806-9
Li, W.: The sharp Lipschitz constants for feasible and optimal solutions of a perturbed linear program. Linear Algebra Appl. 187, 15–40 (1993)
Li, W.: Sharp Lipschitz constants for basic optimal solutions and basic feasible solutions of linear programs. SIAM J. Control Optim. 32, 140–153 (1994)
Luo, X.D., Luo, Z.Q.: Extension of Hoffman’s error bound to polynomial systems. SIAM J. Optim. 4, 383–392 (1994)
Luo, Z.Q., Pang, J.S.: Error bounds for analytic systems and their applications. Math. Program. 67, 1–28 (1994)
Mangasarian, O.L.: A condition number for differentiable convex inequalities. Math. Oper. Res. 10, 175–179 (1985)
Mangasarian, O.L., Shiau, T.H.: Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems. SIAM J. Control Optim. 25, 583–595 (1987)
Ralphs, T., Hassanzadeh, A.: On the value function of a mixed integer linear optimization problem and an algorithm for its construction. COR@L Technical Report 14T–004 (2014)
Robinson, S.M.: An application of error bounds for convex programming in a linear space. SIAM J. Control Optim. 13, 271–273 (1975)
Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)
Zalinescu, C.: Sharp estimates for Hoffman’s constant for systems of linear inequalities and equalities. SIAM J. Optim. 14, 517–533 (2003)
Acknowledgments
The author is grateful to the anonymous referees for their precise and substantial remarks, and to Immanuel Bomze, Peter Gritzmann and Guoyin Li for helpful comments on an earlier version of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Stein, O. Error bounds for mixed integer linear optimization problems. Math. Program. 156, 101–123 (2016). https://doi.org/10.1007/s10107-015-0872-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-015-0872-7