Abstract
The reverse split rank of an integral polyhedron \(P\) is defined as the supremum of the split ranks of all rational polyhedra whose integer hull is \(P\). Already in \(\mathbb {R}^3\) there exist polyhedra with infinite reverse split rank. We give a geometric characterization of the integral polyhedra in \(\mathbb {R}^n\) with infinite reverse split rank.









Similar content being viewed by others
References
Averkov, G., Conforti, M., Del Pia, A., Di Summa, M., Faenza, Y.: On the convergence of the affine hull of the Chvátal–Gomory closures. SIAM J. Discrete Math. 27, 1492–1502 (2013)
Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math. 89, 3–44 (1998)
Barvinok, A.: A course in convexity. Grad. Stud. Math. 54. AMS, Providence (2002)
Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Maximal lattice-free convex sets in linear subspaces. Math. Oper. Res. 35, 704–720 (2010)
Basu, A., Cornuéjols, G., Margot, F.: Intersection cuts with infinite split rank. Math. Oper. Res. 37, 21–40 (2012)
Conforti, M., Del Pia, A., Di Summa, M., Faenza, Y., Grappe, R.: Reverse Chvátal-Gomory rank. In: Goemans, M., Correa, J. (eds.) Proceedings of the XVI International Conference on Integer Programming and Combinatorial Optimization (IPCO), Lecture Notes in Computer Science 7801, pp. 133–144. Springer, Heidelberg (2013)
Conforti, M., Del Pia, A., Di Summa, M., Faenza, Y., Grappe, R.: Reverse Chvátal–Gomory rank. SIAM J. Discrete Math. 29, 166–181 (2015)
Cook, W., Coullard, C.R., Túran, G.: On the complexity of cutting-plane proofs. Discrete Appl. Math. 18, 25–38 (1987)
Cook, W., Kannan, R., Schrijver, A.: Chvátal closures for mixed integer programming problems. Math. Program. 47, 155–174 (1990)
Del Pia, A.: On the rank of disjunctive cuts. Math. Oper. Res. 37, 372–378 (2012)
Del Pia, A., Weismantel, R.: On convergence in mixed integer programming. Math. Program. 135, 397–412 (2012)
Eisenbrand, F., Schulz, A.S.: Bounds on the Chvátal rank of polytopes in the \(0/1\) cube. Combinatorica 23, 245–261 (2003)
Kannan, R., Lovasz, L.: Covering minima and lattice-point-free convex bodies. Ann. Math. Second Ser. 128, 577–602 (1988)
Khintchine, A.: A quantitative formulation of Kronecker’s theory of approximation. Izv. Acad. Nauk SSSR Ser. Mat. 12, 113–122 (1948) (in Russian)
Lovász, L.: Geometry of numbers and integer programming. In: Iri, M., Tanabe, K. (eds.) Mathematical Programming: Recent Developements and Applications, pp. 177–210. Kluwer, Norwell (1989)
Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-Interscience, New York (1988)
Pokutta, S., Stauffer, G.: Lower bounds for the Chvátal–Gomory rank in the 0/1 cube. Oper. Res. Lett. 39, 200–203 (2011)
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
Rothvoß, T., Sanità, L.: 0/1 polytopes with quadratic Chvátal rank. In: Goemans, M., Correa, J. (eds.) Proceedings of the XVI International Conference on Integer Programming and Combinatorial Optimization (IPCO), Lecture Notes in Computer Science 7801, pp. 349–361. Springer, Heidelberg (2013)
Schrijver, A.: On cutting planes. In: Deza, M., Rosenberg, I.G. (eds.) Combinatorics 79 Part II, Annals of Discrete Mathematics 9, pp. 291–296. North-Holland, Amsterdam (1980)
Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience, New York (1986)
Acknowledgments
Michele Conforti and Marco Di Summa acknowledge support from the Univesity of Padova (grant “Progetto di Ateneo 2013”). Yuri Faenza’s research was supported by the German Research Foundation (DFG) within the Priority Programme 1307 Algorithm Engineering. The authors are grateful to two anonymous referees, whose detailed comments helped us to improve the paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Conforti, M., Del Pia, A., Di Summa, M. et al. Reverse split rank. Math. Program. 154, 273–303 (2015). https://doi.org/10.1007/s10107-015-0883-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-015-0883-4