Abstract
We consider a certain class of chance-constrained binary knapsack problem where each item has a normally distributed random weight that is independent of the other items. For this problem we propose an efficient pseudo-polynomial time algorithm based on the robust optimization approach for finding a solution with a theoretical bound on the probability of satisfying the knapsack constraint. Our algorithm is tested on a wide range of random instances, and the results demonstrate that it provides qualified solutions quickly. In contrast, a state-of-the-art MIP solver is only applicable for instances of the problem with a restricted number of items.


Similar content being viewed by others
References
Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1), 1–13 (1999)
Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)
Bhalgat, A., Goel, A., Khanna, S.: Improved approximation results for stochastic knapsack problems. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, pp. 1647–1665 (2011)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
Calafiore, G., El Ghaoui, L.: On distributionally robust chance-constrained linear programs. J. Optim. Theory App. 130(1), 1–22 (2006)
Cohn, A., Barnhart, C.: The stochastic knapsack problem with random weights: a heuristic approach to robust transportation planning. In: Proceedings of the Triennial Symposium on Transportation Analysis (TRISTAN III) (1998)
Fortz, B., Labbé, M., Louveaux, F., Poss, M.: The knapsack problem with gaussian weights. Technical report. Université Libre de Bruxelles, Brussels, Belgium (2008)
Goel, A., Indyk, P.: Stochastic load balancing and related problems. In: 40th Annual Symposium on Foundations of Computer Science, pp. 579–586 (1999)
Goerigk, M.: A note on upper bounds to the robust knapsack problem with discrete scenarios. Ann. Oper. Res. 223(1), 461–469 (2014)
Goyal, V., Ravi, R.: A PTAS for the chance-constrained knapsack problem with random item sizes. Oper. Res. Lett. 38(3), 161–164 (2010)
Han, J., Lee, K., Lee, C., Park, S.: Exact algorithms for a bandwidth packing problem with queueing delay guarantees. INFORMS J. Comput. 25(3), 585–596 (2013)
Iida, H.: A note on the max–min 0–1 knapsack problem. J. Comb. Optim. 3(1), 89–94 (1999)
Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Berlin (2004)
Kleinberg, J., Rabani, Y., Tardos, É.: Allocating bandwidth for bursty connections. SIAM J. Comput. 30(1), 191–217 (2000)
Kleywegt, A., Papastavrou, J.: The dynamic and stochastic knapsack problem. Oper. Res. 46(1), 17–35 (1998)
Kleywegt, A., Papastavrou, J.: The dynamic and stochastic knapsack problem with random sized items. Oper. Res. 49(1), 26–41 (2001)
Klopfenstein, O., Nace, D.: A robust approach to the chance-constrained knapsack problem. Oper. Res. Lett. 36, 628–632 (2008)
Klopfenstein, O., Nace, D.: Cover inequalities for robust knapsack sets—application to the robust bandwidth packing problem. Networks 59(1), 59–72 (2012)
Kosuch, S., Lisser, A.: Upper bounds for the 0–1 stochastic knapsack problem and a B and B algorithm. Ann. Oper. Res. 176, 77–93 (2010)
Lee, C., Lee, K., Park, K., Park, S.: Technical note—branch-and-price-and-cut approach to the robust network design problem without flow bifurcations. Oper. Res. 60(3), 35–53 (2012)
Martello, S., Toth, P.: Knapsack Problems. Wiley, New York (1990)
Merzifonluoğlu, Y., Geunes, J., Romeijn, H.E.: The static stochastic knapsack problem with normally distributed item sizes. Math. Program. 134(2), 459–489 (2012)
Monaci, M., Pferschy, U.: On the robust knapsack problem. SIAM J. Optim. 23(4), 1956–1982 (2013)
Monaci, M., Pferschy, U., Serafini, P.: Exact solution of the robust knapsack problem. Comput. Oper. Res. 40, 2625–2631 (2013)
Pisinger, D.: A minimal algorithm for the 0–1 knapsack problem. Oper. Res. 45(5), 758–767 (1997)
Savelsbergh, M.: A branch-and-price algorithm for the generalized assignment problem. Oper. Res. 45, 831–841 (1997)
Sbihi, A.: A cooperative local search-based algorithm for the multiple-scenario max–min knapsack problem. Eur. J. Oper. Res. 202(2), 339–346 (2010)
Talla Nobibon, F., Leus, R.: Complexity results and exact algorithms for robust knapsack problems. J. Optim. Theory Appl. 161(2), 533–552 (2014)
Taniguchi, F., Yamada, T., Kataoka, S.: Heuristic and exact algorithms for the max–min optimization of the multi-scenario knapsack problem. Comput. Oper. Res. 35(6), 2034–2048 (2008)
Yu, G.: On the max–min 0–1 knapsack problem with robust optimization applications. Oper. Res. 44(2), 407–415 (1996)
Acknowledgments
This research was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (Grant 2011-0027301).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Han, J., Lee, K., Lee, C. et al. Robust optimization approach for a chance-constrained binary knapsack problem. Math. Program. 157, 277–296 (2016). https://doi.org/10.1007/s10107-015-0931-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-015-0931-0