Skip to main content
Log in

On Lipschitz optimization based on gray-box piecewise linearization

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We address the problem of minimizing objectives from the class of piecewise differentiable functions whose nonsmoothness can be encapsulated in the absolute value function. They possess local piecewise linear approximations with a discrepancy that can be bounded by a quadratic proximal term. This overestimating local model is continuous but generally nonconvex. It can be generated in its abs-normal form by a minor extension of standard algorithmic differentiation tools. Here we demonstrate how the local model can be minimized by a bundle-type method, which benefits from the availability of additional gray-box information via the abs-normal form. In the convex case our algorithm realizes the consistent steepest descent trajectory for which finite convergence was established earlier, specifically covering counterexamples where steepest descent with exact line-search famously fails. The analysis of the abs-normal representation and the design of the optimization algorithm are geared toward the general case, whereas the convergence proof so far covers only the convex case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alt, W.: Numerische Verfahren der konvexen, nichtglatten Optimierung. Eine anwendungsorientierte Einführung. Teubner, Leipzig (2004)

    Book  Google Scholar 

  2. Aubin, J.-P., Arriga, C.: Differential Inclusions. Set-Valued Maps and Viability Theory. Springer, Berlin (1984)

    Book  Google Scholar 

  3. Bonnans, F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.: Numerical Optimization. Theoretical and Practical Aspects. Transl. from the French. 2nd revised edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  4. Clarke, F.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)

    Book  MATH  Google Scholar 

  5. Cominetti, R., Courdurier, M.: Coupling general penalty schemes for convex programming with the steepest descent and the proximal point algorithm. SIAM J. Optim. 13(3), 745–765 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Oliveira, W., Sagastizábal, C.: Bundle methods in the XXIst century: a birds’-eye view. Pesquisa Operacional 34(3), 647–670 (2014)

    Article  Google Scholar 

  7. Fiege, S., Griewank, A., Walther, A.: An exploratory line search for piecewise differentiable objective functions based on algorithmic differentiation. PAMM 12, 631–632 (2012)

    Article  Google Scholar 

  8. Fourer, R.: A simplex algorithm for piecewise-linear programming. I. Derivation and proof. Math. Program. 33, 204–233 (1985)

  9. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  10. Goffin, J.-L.: Subgradient optimization in nonsmooth optimization (including the soviet revolution). Doc. Math. Extra Vol., 277–290 (2012)

  11. Griewank, A.: On stable piecewise linearization and generalized algorithmic differentiation. Opt. Meth. Softw. 28(6), 1139–1178 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Griewank, A., Bernt, J.-U., Randons, M., Streubel, T.: Solving Piecewise Linear Equations in abs-normal Form. Technical report, Humboldt Universität zu Berlin (2013). To appear in Linear Algebra and its Applications

  13. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  14. Fiege, S., Griewank, A., Kulshreshta, K., Walther, A.: An algorithm for nonsmooth optimization by successive piecewise linearization. Technical report, HU Berlin (2015)

  15. Gürbüzbalaban, M., Overton, M.L.: On Nesterov’s nonsmooth Chebyshev–Rosenbrock functions. Nonlinear Anal.: Theory Methods Appl. 75(3), 1282–1289 (2012)

    Article  MATH  Google Scholar 

  16. Hare, W., Nutini, J.: A derivative-free approximate gradient sampling algorithm for finite minimax problems. Comput. Optim. Appl. 56(1), 1–38 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Springer, Berlin (1993)

    MATH  Google Scholar 

  18. Karmitsa, N., Mäkelä, M.: Limited memory bundle method for large bound constrained nonsmooth optimization: convergence analysis. Optim. Methods Softw. 25(6), 895–916 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lemaréchal, C.: Nonsmooth Optimization and Descent Methods. Technical Report 78,4, IIASA (1978)

  20. Lemaréchal, C., Sagastizábal, C.: Variable metric bundle methods: from conceptual to implementable forms. Math. Program. 76(3), 393–410 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lewis, A., Overton, M.: Nonsmooth optimization via quasi-Newton methods. Math. Program. 141(1–2), 135–163 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mifflin, R., Sagastizábal, C.: A science fiction story in nonsmooth optimization originating at IIASA. Doc. Math. Extra Vol., 291–300 (2012)

  23. Nesterov, Y.: Lexicographic differentiation of nonsmooth functions. Math. Program. 104(2–3), 669–700 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Scholtes, S.: Introduction to Piecewise Differentiable Functions. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  25. Shen, J., Han, L., Pang, J.S.: Switching and stability properties of conewise linear systems. ESAIM: Control Optim. Calc. Var. 16(3), 764–793 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shor, N.Z.: Nondifferentiable Optimization and Polynomial Problems. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  27. Walther, A., Griewank, A.: Combinatorial Scientific Computing. Chapter Getting Started with ADOL-C, pp. 181–202. Chapman-Hall CRC Computational Science (2012)

  28. Wolfe, P.: A method of conjugate subgradients for minimizing nondifferentiable functions. Math. Program. Stud. 3, 145–173 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yuan, G., Wei, Z., Wang, Z.: Gradient trust region algorithm with limited memory BFGS update for nonsmooth convex optimization. Comp. Opt. Appl. 54(1), 45–64 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees for their valuable comments, which helped us to improve the quality of the paper. This material was based upon work supported in part by the U.S. Department of Energy, Office of Science, under Contract DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Walther.

Additional information

Government License Section: The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griewank, A., Walther, A., Fiege, S. et al. On Lipschitz optimization based on gray-box piecewise linearization. Math. Program. 158, 383–415 (2016). https://doi.org/10.1007/s10107-015-0934-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-015-0934-x

Keywords

Mathematics Subject Classification

Navigation