Skip to main content
Log in

Sublevel representations of epi-Lipschitz sets and other properties

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Epi-Lipschitz sets in normed spaces are represented as sublevel sets of Lipschitz functions satisfying a so-called qualification condition. Canonical representations through the signed distance functions associated with the sets are also obtained. New optimality conditions are provided, for optimization problems with epi-Lipschitz set constraints, in terms of the signed distance function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Hiriart-Urruty [11] formally states the result in a Banach space. The proof is obviously valid in any normed space.

  2. Again, stated in a Banach space, and valid in any normed space.

  3. As the author notices in [16], the argument in [15], written in finite dimensions, remains valid in any normed space.

  4. In a Banach space, the argument in [11] is valid in any normed space.

References

  1. Bonnisseau, J.-M., Cornet, B., Czarnecki, M.-O.: The marginal pricing rule revisited. Econ. Theory 33(3), 579–589 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Clarke, F.H.: Generalized gradients and applications. Trans. Am. Math. Soc. 205, 247–262 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Clarke, F.H.: A new approach to Lagrange multipliers. Math. Oper. Res. 1, 165–174 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley Intersciences, New York (1983). Second Edition: Classics in Applied Mathematics, 5, Society for Industrial and Applied Mathematics, Philadelphia (1990)

  5. Cornet, B., Czarnecki, M.-O.: Smooth representations of epi-Lipschitzian subsets. Nonlinear Anal. Theory Methods Appl. 37, 139–160 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cornet, B., Czarnecki, M.-O.: Smooth normal approximations of epi-Lipschitz subsets of \(R^n\). SIAM J. Control Optim. 37(3), 710–730 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cornet, B., Czarnecki, M.-O.: Existence of generalized equilibria. Nonlinear Anal. Theory Methods Appl. 44, 555–574 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cwiszewski, A., Kryszewski, W.: Equilibria of set-valued maps: a variational approach. Nonlinear Anal. Theory Methods Appl. 48, 707–746 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Czarnecki, M.-O., Gudovich, A.N.: Representation of epi-Lipschitzian sets. Nonlinear Anal. Theory Methods Appl. 73, 2361–2367 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hiriart-Urruty, J.-B.: Gradients généralisés de fonctions marginales. SIAM J. Control Optim. 16, 301–316 (1978)

    Article  MATH  Google Scholar 

  11. Hiriart-Urruty, J.-B.: Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4, 79–97 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hiriart-Urruty, J.-B.: New concepts in non differentiable programming. Bull. Soc. Math. France Mém. 60, 57–85 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Penot, J.-P.: Calculus Without Derivatives, Graduate Texts in Mathematics. Spinger, New York (2014)

    Google Scholar 

  14. Quincampoix, M.: Differential inclusions and target problems. SIAM J. Control Optim. 30, 324–335 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rockafellar, R.T.: Clarke’s tangent cone and the boundaries of closed sets in \({\mathbb{R}}^n\). Nonlinear Anal. Theory Methods Appl. 3, 145–154 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rockafellar, R.T.: Generalized directional derivatives and subgradients of nonconvex functions. Can. J. Math. 32, 157–180 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rockafellar, R.T.: Directional Lipschitzian functions and subdifferential calculus. Proc. Lond. Math. Soc. 39, 331–355 (1980)

    MATH  Google Scholar 

  18. Thibault, L.: Problème de Bolza dans un espace de Banach séparable. C. R. Acad. Sci. Paris Sér. I Math. 282, 1303–1306 (1976)

    MATH  Google Scholar 

  19. Thibault, L.: Mathematical programming and optimal control problems defined by compactly Lipschitzian mappings. Sém. Anal. Convexe Montp. Exp. 10 (1978)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Thibault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czarnecki, MO., Thibault, L. Sublevel representations of epi-Lipschitz sets and other properties. Math. Program. 168, 555–569 (2018). https://doi.org/10.1007/s10107-016-1070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-016-1070-y

Keywords

Mathematics Subject Classification

Navigation