Skip to main content
Log in

Choquet representability of submodular functions

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Let \(\Omega \) be an arbitrary set, equipped with an algebra \({\mathcal {A}}\subseteq 2^{\Omega }\) and let \(f: B({\mathcal {A}}) \rightarrow {\mathbb {R}}\) be a functional defined on the set \(B({\mathcal {A}}) \) of bounded measurable functions \(x:\Omega \rightarrow {\mathbb {R}}\). We provide necessary and sufficient conditions for a submodular functional f to be representable as a Choquet integral. From standard properties of the Choquet integral the functional f should be positively homogeneous and constant additive. Our first result shows that these two properties, together with submodularity, characterize a subadditive Choquet integral, when \(\Omega \) is finite. In the general case, f is a subadditive Choquet integral if and only if it satisfies the three previous properties, together with sup-norm continuity. This result provides another characterization of subadditive Choquet integrals different from the seminal paper by Schmeidler (Proc Am Math Soc 97(2):255–261, 1986) that relies on comonotonic additivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The functional f is said to be comonotonic additive if \(f(x+y)= f(x)+f(y)\) for all xy in \(B({\mathcal {A}}) \) such that \(x+y\in B({\mathcal {A}}) \) and \((x(\omega )-x(\omega '))(y(\omega )-y(\omega '))\ge 0\) for all \(\omega ,\omega '\) in \(\Omega \).

  2. When \(\Omega \) is finite of cardinal n, we can identify \({\mathbb {R}}^{\Omega }\) with \({\mathbb {R}}^{n}\), thus a function \(x:\Omega \rightarrow {\mathbb {R}}\) can also be viewed as the n-tuple \(x=(x_{1}, \dots , x_{n})\). The previously defined order is the coordinate-wise order of \({\mathbb {R}}^{n}\), i.e., \(x=(x_{1}, \dots , x_{n})\le y=(y_{1}, \dots , y_{n})\) in \({\mathbb {R}}^{n}\) means \(x_{i}\le y_{i}\) for every \(i=1,\dots ,n\). The lattice operations \(\wedge \) and \(\vee \) are defined by \(x\wedge y:= (\min \{x_{1},y_{1}\}), \dots , \min \{x_{n},y_{n}\}), x\vee y:= (\max \{x_{1},y_{1}\}), \dots , \max \{x_{n},y_{n}\})\). With the previous identification, for \(A\subseteq \{1,\dots , n\}, \varvec{1}_{A}\) will now be the vector in \({\mathbb {R}}^{n}\) such that \(x_{i}=1\) if \(i\in A\) and \(x_{i}=0\) otherwise. Thus we denote by \(\varvec{1}_{i}:= \varvec{1}_{\{i\}}\) (resp. \(\varvec{1}_{\Omega }\)) the vector with all coordinates equal to zero, but the i-th equal to 1 (resp. with all coordinates equal to 1) so that \(x=(x_{1}, \dots , x_{n})= x_{1}\varvec{1}_{1}+ \dots +x_{n}\varvec{1}_{n}\).

  3. This is easily proved to be equivalent to \(f(x +t \varvec{1}_{\Omega })= f(x) +t f(\varvec{1}_{\Omega })\) for all \(t\in {\mathbb {R}}\), all \(x\in {\mathbb {R}}^{\Omega }\). Also, under positive homogeneity, constant additivity is equivalent to

    $$\begin{aligned} f(x + \varvec{1}_{\Omega })= f(x) + f(\varvec{1}_{\Omega }) \hbox { for all } x\in {\mathbb {R}}^{\Omega }. \end{aligned}$$

    Indeed, \(f(x +t \varvec{1}_{\Omega })= f(t(x/t + \varvec{1}_{\Omega }))= tf(x/t + \varvec{1}_{\Omega })=t(f(x/t) + f(\varvec{1}_{\Omega }))=f(x) +tf( \varvec{1}_{\Omega })\).

  4. Under constant additivity, it is easily proved to be equivalent to f submodular on the whole space \({\mathbb {R}}^{\Omega }\).

  5. Indeed \(bv({\mathcal {A}})\) contains the class of all finite games (i.e., \(\Omega \) is finite) since there are finitely many finite chains. Moreover, \(bv({\mathcal {A}})\) contains all capacities v since, using the monotonicity of v, for all finite chains \((A_{k}), \sum \nolimits _{k=1}^{K} |v(A_{k}) - v(A_{k-1}) |= \sum \nolimits _{k=1}^{K} v(A_{k}) - v(A_{k-1}) = v(\Omega ) -v(\emptyset ) = v(\Omega )\). Consequently, \(\Vert v\Vert = v(\Omega )<\infty \). An additive game \(\mu \) is called a charge (or a signed charge) and we point out that the total variation norm of a charge \(\Vert \mu \Vert \) is exactly the variation norm of the game \(\mu \) defined above.

  6. As in Condition (i) of Theorem 2.2.

  7. If f is additive, then the functional f is modular. Indeed, since \(x\vee y+ x \wedge y =x+y\)\(f(x\vee y) +f(x \wedge y) =f(x\vee y+ x \wedge y) =f(x+y)= f(x) +f(y)\) for all xy in \(B({\mathcal {A}})\).

  8. Define \( \Vert \mu \Vert =|\mu |(\Omega ):= \mu ^{+}(\Omega )+\mu ^{-}(\Omega )\), where \(\mu ^{+}(A):= \sup \{\mu (B) \, :\, B\subseteq A, A \in {\mathcal {A}}\}, \mu ^{-}(\Omega ):= -\inf \{\mu (B) \, :\, B\subseteq A, A \in {\mathcal {A}}\}\) for \(A \in {\mathcal {A}}\). Then \( \Vert \mu \Vert =|\mu |(\Omega )\) (see for example [3] Theorem 2.2.4 page 46, Theorem 4.1.2 page 86, [1] Corollary 10.53 page 397) and the result follows.

References

  1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. Springer-Verlag, New York (1999)

    Book  MATH  Google Scholar 

  2. Aumann, R., Shapley, L.: Values of Non-atomic Games. Princeton University Press, Princeton (1974)

    MATH  Google Scholar 

  3. Bhaskara Rao, K.P.S., Bhaskara Rao, M.: Theory of Charges, A Study of Finitely Additive Measures. Academic Press, New York (1983)

    MATH  Google Scholar 

  4. Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dellacherie, C.: Quelques commentaires sur les prolongements de capacités. Séminaire Probabilités V. Lecture Notes in Math. 191. Springer-Verlag, New York (1971)

  6. Denneberg, D.: Non-additive Measure and Integral. Kluwer, Dordrecht (1994)

    Book  MATH  Google Scholar 

  7. Huber, P.J.: Robust Statistics. Wiley, Hoboken (1981). (Series in Probabilities and Mathematical Statistics)

    Book  MATH  Google Scholar 

  8. König, H.: The (sub/super) additivity assertion of Choquet. Studia Math. 157, 171–197 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Marinacci, M., Montrucchio, L.: Introduction to the mathematics of ambiguity. In: Uncertainty in Economic Theory. Routledge, New York (2004)

  10. Marinacci, M., Montrucchio, L.: On concavity and super modularity. J. Math. Anal. Appl. 344, 642–654 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  12. Schmeidler, D.: Integral representation without additivity. Proc. Am. Math. Soc. 97(2), 255–261 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shapley, L.S.: Cores of convex games. Int. J. Game Theory 1, 12–26 (1971)

    MathSciNet  MATH  Google Scholar 

  15. Topkis, D.: Supermodularity and Complementarity. Princeton, New Jersey (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Cornet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chateauneuf, A., Cornet, B. Choquet representability of submodular functions. Math. Program. 168, 615–629 (2018). https://doi.org/10.1007/s10107-016-1074-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-016-1074-7

Mathematics Subject Classification

Navigation