Skip to main content

Advertisement

Log in

On imposing connectivity constraints in integer programs

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In many network applications, one searches for a connected subset of vertices that exhibits other desirable properties. To this end, this paper studies the connected subgraph polytope of a graph, which is the convex hull of subsets of vertices that induce a connected subgraph. Much of our work is devoted to the study of two nontrivial classes of valid inequalities. The first are the ab-separator inequalities, which have been successfully used to enforce connectivity in previous computational studies. The second are the indegree inequalities, which have previously been shown to induce all nontrivial facets for trees. We determine the precise conditions under which these inequalities induce facets and when each class fully describes the connected subgraph polytope. Both classes of inequalities can be separated in polynomial time and admit compact extended formulations. However, while the ab-separator inequalities can be lifted in linear time, it is NP-hard to lift the indegree inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Álvarez-Miranda, E., Ljubić, I., Mutzel, P.: The maximum weight connected subgraph problem. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization, pp. 245–270. Springer, Berlin (2013)

    Chapter  Google Scholar 

  2. Álvarez-Miranda, E., Ljubić, I., Mutzel, P.: The rooted maximum node-weight connected subgraph problem. In: Gomes, C., Sellmann, M. (eds.) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Lecture Notes in Computer Science, vol. 7874, pp. 300–315. Springer, Berlin (2013)

  3. Backes, C., Rurainski, A., Klau, G., Müller, O., Stöckel, D., Gerasch, A., Küntzer, J., Maisel, D., Ludwig, N., Hein, M., et al.: An integer linear programming approach for finding deregulated subgraphs in regulatory networks. Nucl. Acids Res. 40(6), e43 (2012)

    Article  Google Scholar 

  4. Bailly-Bechet, M., Borgs, C., Braunstein, A., Chayes, J., Dagkessamanskaia, A., François, J.M., Zecchina, R.: Finding undetected protein associations in cell signaling by belief propagation. Proc. Nat. Acad. Sci. 108(2), 882–887 (2011)

    Article  Google Scholar 

  5. Biha, M., Kerivin, H., Ng, P.: Polyhedral study of the connected subgraph problem. Discrete Math. 338(1), 80–92 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buchanan, A., Sung, J., Butenko, S., Pasiliao, E.: An integer programming approach for fault-tolerant connected dominating sets. INFORMS J. Comput. 27(1), 178–188 (2015)

    Article  MATH  Google Scholar 

  7. Carvajal, R., Constantino, M., Goycoolea, M., Vielma, J., Weintraub, A.: Imposing connectivity constraints in forest planning models. Oper. Res. 61(4), 824–836 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, C.Y., Grauman, K.: Efficient activity detection with max-subgraph search. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 1274–1281. IEEE (2012)

  9. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2010)

    Google Scholar 

  10. Dittrich, M., Klau, G., Rosenwald, A., Dandekar, T., Müller, T.: Identifying functional modules in protein-protein interaction networks: an integrated exact approach. Bioinformatics 24(13), i223–i231 (2008)

    Article  Google Scholar 

  11. Du, D.Z., Wan, P.: Connected Dominating Set: Theory and Applications. Springer Optimization and Its Applications, vol. 77. Springer, New York (2013)

    Book  MATH  Google Scholar 

  12. Eppstein, D.: When does a graph admit an orientation in which there is at most one \(s\)\(t\) walk? Theoretical computer science stack exchange. http://cstheory.stackexchange.com/questions/31412/when-does-a-graph-admit-an-orientation-in-which-there-is-at-most-one-s-t-walk (version: 2015-05-07)

  13. Fischetti, M., Leitner, M., Ljubić, I., Luipersbeck, M., Monaci, M., Resch, M., Salvagnin, D., Sinnl, M.: Thinning out Steiner trees: a node-based model for uniform edge costs. Math. Prog. Comp. 1–27 (2016). doi:10.1007/s12532-016-0111-0

  14. Garfinkel, R., Nemhauser, G.: Optimal political districting by implicit enumeration techniques. Manag. Sci. 16(8), B-495 (1970)

    Article  MATH  Google Scholar 

  15. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, Algorithms and Combinatorics, vol. 2, 2nd edn. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  16. Johnson, D.: The NP-completeness column: an ongoing guide. J. Algorithms 6(1), 145–159 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Korte, B., Lovász, L., Schrader, R.: Greedoids, Algorithms and Combinatorics, vol. 4. Springer, Berlin (1991)

    MATH  Google Scholar 

  18. Ljubić, I., Weiskircher, R., Pferschy, U., Klau, G., Mutzel, P., Fischetti, M.: An algorithmic framework for the exact solution of the prize-collecting Steiner tree problem. Math. Program. 105(2–3), 427–449 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lucena, A., Resende, M.: Strong lower bounds for the prize collecting Steiner problem in graphs. Discrete Appl. Math. 141(1), 277–294 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moody, J., White, D.: Structural cohesion and embeddedness: a hierarchical concept of social groups. Am. Sociol. Rev. 68(1), 103–127 (2003)

    Article  Google Scholar 

  21. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization, Discrete Mathematics and Optimization, vol. 18. Wiley, New York (1988)

    MATH  Google Scholar 

  22. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover Publications, Mineola (1998)

    MATH  Google Scholar 

  23. Raghavan, S., Magnanti, T.: Network connectivity. In: Dell’Amico, M., Maffioli, F., Martello, S. (eds.) Annotated Bibliographies in Combinatorial Optimization, pp. 335–354. Wiley, New York (1997)

    Google Scholar 

  24. Rajagopalan, S., Vazirani, V.: On the bidirected cut relaxation for the metric Steiner tree problem. SODA 99, 742–751 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003)

    MATH  Google Scholar 

  26. Vijayanarasimhan, S., Grauman, K.: Efficient region search for object detection. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 1401–1408. IEEE (2011)

  27. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, Strutural Analysis in the Social Sciences, vol. 8. Cambridge University Press, New York (1994)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank very much the anonymous referee who introduced us to indegree inequalities and the book of Korte et al. [17]. This material is based upon work supported by the AFRL Mathematical Modeling and Optimization Institute. Partial support by AFOSR under Grants FA9550-12-1-0103 and FA8651-12-2-0011 and by NSF under Grant CMMI-1538493 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austin Buchanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Buchanan, A. & Butenko, S. On imposing connectivity constraints in integer programs. Math. Program. 166, 241–271 (2017). https://doi.org/10.1007/s10107-017-1117-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1117-8

Keywords

Mathematics Subject Classification

Navigation