Skip to main content
Log in

Integral simplex using decomposition with primal cutting planes

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper concentrates on the addition of cutting planes to the integral simplex using decomposition (ISUD) of Zaghrouti et al. (Oper Res 62(2):435–449, 2014). This method solves the set partitioning problem by iteratively improving an existing feasible solution. We present the algorithm in a primal language and relate it to existing augmenting methods. The resulting theoretical properties, stronger than the ones already known, simplify termination proofs and deepen the geometrical insights on ISUD in particular. We show that primal cuts, that is, cutting planes that are tight at the current feasible integer solution, can be used to improve the performance of the algorithm, and further that such cutting planes are enough to solve each augmentation problem. We propose efficient separation procedures for well-known polyhedral inequalities, namely primal clique and odd-cycle cuts. Numerical results demonstrate the effectiveness of primal cutting planes; tests are performed on small and large-scale set partitioning problems from aircrew and bus-driver scheduling instances up to 1600 constraints and 570,000 variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. A formulation of SPP as an integer linear programming problem is given in Sect. 2.2.

  2. The above definition includes local search algorithms, whose analysis is, however, outside of the scope of the present paper that is concerned with simplex-type algorithms that are able to prove optimality of the solution.

  3. More details on this feature and its implications are given in Sect. 2.2.

  4. For the determination of the clique of maximal weight in \(\mathcal {G}_l\), we use the cliquer open source library, available at http://users.aalto.fi/~pat/cliquer.html, based on the algorithm described in [19].

  5. http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

  6. CPLEX is freely available for academic and research purposes under the IBM academic initiative: http://www-03.ibm.com/ibm/university/academic. When referring to CPLEX, we always refer to the version 12.4 of this software, with single-thread settings (all other settings being default).

  7. GENCOL is a commercial software developed at the GERAD research center and now owned by the AD OPT company, a division of KRONOS.

References

  1. Balas, E., Padberg, M.: On the set-covering problem: 2—an algorithm for set partitioning. Oper. Res. 23(1), 74–90 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baldacci, R., Mingozzi, A.: A unified exact method for solving different classes of vehicle routing problems. Math. Program. 120, 347–380 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Israel, A., Charnes, A.: On some problems of diophantine programming. Cahiers du Centre d’Études de Recherche Opérationnelle 4, 215–280 (1962)

    MathSciNet  MATH  Google Scholar 

  4. Desrosiers, J., Dumas, Y., Solomon, M.M., Soumis, F.: Time constrained routing and scheduling. Handb. Oper. Res. Manag. Sci. 8, 35–139 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eisenbrand, F., Rinaldi, G., Ventura, P.: Primal separation for 0/1 polytopes. Math. Program. 95(3), 475–491 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Elhallaoui, I., Metrane, A., Desaulniers, G., Soumis, F.: An improved primal simplex algorithm for degenerate linear programs. INFORMS J. Comput. 23(4), 569–577 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Elhallaoui, I., Metrane, A., Soumis, F., Desaulniers, G.: Multi-phase dynamic constraint aggregation for set partitioning type problems. Math. Program. 123(2), 345–370 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garfinkel, R.S., Nemhauser, G.L.: The set-partitioning problem: set covering with equality constraints. Oper. Res. 17(5), 848–856 (1969)

    Article  MATH  Google Scholar 

  9. Glover, F.: A new foundation for a simplified primal integer programming algorithm. Oper. Res. 16, 727–740 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gomory, R.E.: Outline of an algorithm for integer solutions to linear program. Bull. Am. Math. Soc. 64(5), 275–278 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gomory, R.E.: All-integer integer programming algorithm. Industrial Scheduling, pp. 193–206 (1963)

  12. Haus, U.U., Köppe, M., Weismantel, R.: A primal all-integer algorithm based on irreducible solutions. Math. Program. 96(2), 205–246 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kallio, M.J., Porteus, E.L.: A class of methods for linear programming. Math. Program. 14(1), 161–169 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Letchford, A.N., Lodi, A.: Primal cutting plane algorithms revisited. Math. Methods Oper. Res. 56(1), 67–81 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Letchford, A.N., Lodi, A.: An augment-and-branch-and-cut framework for mixed 0–1 programming. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink!. Lecture Notes in Computer Science, vol. 2570, pp. 119–133. Springer, Berlin (2003)

  16. Letchford, A.N., Lodi, A.: Primal separation algorithms. Q. J. Belg Fr. Ital. Oper. Res. Soc. 1(3), 209–224 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Metrane, A., Soumis, F., Elhallaoui, I.: Column generation decomposition with the degenerate constraints in the subproblem. Eur. J. Oper. Res. 207(1), 37–44 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Omer, J., Rosat, S., Raymond, V., Soumis, F.: Improved Primal Simplex: A More General Theoretical Framework and an Extended Experimental Analysis. Les Cahiers du GERAD G-2014-13, HEC Montréal, Canada. Submitted to Informs Journal on Computing (2014)

  19. Östergård, P.R.J.: A new algorithm for the maximum-weight clique problem. Nord. J. Comput. 8(4), 424–436 (2001)

    MathSciNet  Google Scholar 

  20. Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program. 5(1), 199–215 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rönnberg, E., Larsson, T.: Column generation in the integral simplex method. Eur. J. Oper. Res. 192(1), 333–342 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rönnberg, E., Larsson, T.: All-integer column generation for set partitioning: basic principles and extensions. Eur. J. Oper. Res. 233(3), 529–538 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rosat, S., Elhallaoui, I., Soumis, F., Chakour, D.: Influence of the normalization constraint on the integral simplex using decomposition. Discret. Appl. Math. 217, Part 1, 53–70 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rosat, S., Elhallaoui, I., Soumis, F., Lodi, A.: Integral simplex using decomposition with primal cuts. In: Gudmundsson, J., Katajainen, J. (eds.) Experimental Algorithms, Lecture Notes in Computer Science, vol. 8504, pp. 22–33. Springer, New York (2014)

  25. Rozenknop, A., Wolfler Calvo, R., Alfandari, L., Chemla, D., Létocart, L.: Solving the electricity production planning problem by a column generation based heuristic. J. Sched. 16(6), 585–604 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Salkin, H.M., Koncal, R.D.: Set covering by an all-integer algorithm: computational experience. J. ACM 20(2), 189–193 (1973)

    Article  MATH  Google Scholar 

  27. Saxena, A.: Set-partitioning via integral simplex method. Unpublished manuscript, OR Group, Carnegie-Mellon University, Pittsburgh (2003)

  28. Schulz, A.S., Weismantel, R., Ziegler, G.M.: 0/1-integer programming: Optimization and augmentation are equivalent. In: Spirakis, P. (ed.) ESA ’95, LNCS, vol. 979, pp. 473–483. Springer, Berlin (1995)

  29. Spille, B., Weismantel, R.: Primal integer programming. In: Aardal, K., Nemhauser, G., Weismantel, R. (eds.) Discrete Optimization, Handbooks in Operations Research and Management Science, vol. 12, pp. 245–276. Elsevier, Amsterdam (2005)

    Google Scholar 

  30. Stallmann, M.F., Brglez, F.: High-contrast algorithm behavior: observation, hypothesis, and experimental design. In: Proceedings of the 2007 Workshop on Experimental Computer Science, ExpCS ’07. ACM, New York, NY, USA (2007)

  31. Stojković, M., Soumis, F., Desrosiers, J.: The operational airline crew scheduling problem. Transp. Sci. 32(3), 232–245 (1998)

    Article  MATH  Google Scholar 

  32. Thompson, G.L.: An integral simplex algorithm for solving combinatorial optimization problems. Comput. Optim. Appl. 22(3), 351–367 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Towhidi, M., Desrosiers, J., Soumis, F.: The positive edge criterion within COIN-OR’s CLP. Comput. Oper. Res. 49, 41–46 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Trubin, V.: On a method of solution of integer linear programming problems of a special kind. Sov. Math. Dokl. 10, 1544–1546 (1969)

    MATH  Google Scholar 

  35. Young, R.D.: A primal (all-integer) integer programming algorithm. J. Res. Natl. Bur. Stand. B Math. Math. Phys. 69B, 213–250 (1965)

  36. Young, R.D.: A simplified primal (all-integer) integer programming algorithm. Oper. Res. 16(4), 750–782 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zaghrouti, A., Soumis, F., El Hallaoui, I.: Integral simplex using decomposition for the set partitioning problem. Oper. Res. 62(2), 435–449 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by a Collaborative Research and Development Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Kronos Inc. Samuel Rosat benefitted of a grant from the International Internship Program of the Fonds de Recherche du Québec Nature et Technologies (FRQNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Lodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosat, S., Elhallaoui, I., Soumis, F. et al. Integral simplex using decomposition with primal cutting planes. Math. Program. 166, 327–367 (2017). https://doi.org/10.1007/s10107-017-1123-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1123-x

Keywords