Abstract
This paper concentrates on the addition of cutting planes to the integral simplex using decomposition (ISUD) of Zaghrouti et al. (Oper Res 62(2):435–449, 2014). This method solves the set partitioning problem by iteratively improving an existing feasible solution. We present the algorithm in a primal language and relate it to existing augmenting methods. The resulting theoretical properties, stronger than the ones already known, simplify termination proofs and deepen the geometrical insights on ISUD in particular. We show that primal cuts, that is, cutting planes that are tight at the current feasible integer solution, can be used to improve the performance of the algorithm, and further that such cutting planes are enough to solve each augmentation problem. We propose efficient separation procedures for well-known polyhedral inequalities, namely primal clique and odd-cycle cuts. Numerical results demonstrate the effectiveness of primal cutting planes; tests are performed on small and large-scale set partitioning problems from aircrew and bus-driver scheduling instances up to 1600 constraints and 570,000 variables.








Similar content being viewed by others
Notes
A formulation of SPP as an integer linear programming problem is given in Sect. 2.2.
The above definition includes local search algorithms, whose analysis is, however, outside of the scope of the present paper that is concerned with simplex-type algorithms that are able to prove optimality of the solution.
More details on this feature and its implications are given in Sect. 2.2.
For the determination of the clique of maximal weight in \(\mathcal {G}_l\), we use the cliquer open source library, available at http://users.aalto.fi/~pat/cliquer.html, based on the algorithm described in [19].
CPLEX is freely available for academic and research purposes under the IBM academic initiative: http://www-03.ibm.com/ibm/university/academic. When referring to CPLEX, we always refer to the version 12.4 of this software, with single-thread settings (all other settings being default).
GENCOL is a commercial software developed at the GERAD research center and now owned by the AD OPT company, a division of KRONOS.
References
Balas, E., Padberg, M.: On the set-covering problem: 2—an algorithm for set partitioning. Oper. Res. 23(1), 74–90 (1975)
Baldacci, R., Mingozzi, A.: A unified exact method for solving different classes of vehicle routing problems. Math. Program. 120, 347–380 (2009)
Ben-Israel, A., Charnes, A.: On some problems of diophantine programming. Cahiers du Centre d’Études de Recherche Opérationnelle 4, 215–280 (1962)
Desrosiers, J., Dumas, Y., Solomon, M.M., Soumis, F.: Time constrained routing and scheduling. Handb. Oper. Res. Manag. Sci. 8, 35–139 (1995)
Eisenbrand, F., Rinaldi, G., Ventura, P.: Primal separation for 0/1 polytopes. Math. Program. 95(3), 475–491 (2003)
Elhallaoui, I., Metrane, A., Desaulniers, G., Soumis, F.: An improved primal simplex algorithm for degenerate linear programs. INFORMS J. Comput. 23(4), 569–577 (2011)
Elhallaoui, I., Metrane, A., Soumis, F., Desaulniers, G.: Multi-phase dynamic constraint aggregation for set partitioning type problems. Math. Program. 123(2), 345–370 (2010)
Garfinkel, R.S., Nemhauser, G.L.: The set-partitioning problem: set covering with equality constraints. Oper. Res. 17(5), 848–856 (1969)
Glover, F.: A new foundation for a simplified primal integer programming algorithm. Oper. Res. 16, 727–740 (1968)
Gomory, R.E.: Outline of an algorithm for integer solutions to linear program. Bull. Am. Math. Soc. 64(5), 275–278 (1958)
Gomory, R.E.: All-integer integer programming algorithm. Industrial Scheduling, pp. 193–206 (1963)
Haus, U.U., Köppe, M., Weismantel, R.: A primal all-integer algorithm based on irreducible solutions. Math. Program. 96(2), 205–246 (2003)
Kallio, M.J., Porteus, E.L.: A class of methods for linear programming. Math. Program. 14(1), 161–169 (1978)
Letchford, A.N., Lodi, A.: Primal cutting plane algorithms revisited. Math. Methods Oper. Res. 56(1), 67–81 (2002)
Letchford, A.N., Lodi, A.: An augment-and-branch-and-cut framework for mixed 0–1 programming. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink!. Lecture Notes in Computer Science, vol. 2570, pp. 119–133. Springer, Berlin (2003)
Letchford, A.N., Lodi, A.: Primal separation algorithms. Q. J. Belg Fr. Ital. Oper. Res. Soc. 1(3), 209–224 (2003)
Metrane, A., Soumis, F., Elhallaoui, I.: Column generation decomposition with the degenerate constraints in the subproblem. Eur. J. Oper. Res. 207(1), 37–44 (2010)
Omer, J., Rosat, S., Raymond, V., Soumis, F.: Improved Primal Simplex: A More General Theoretical Framework and an Extended Experimental Analysis. Les Cahiers du GERAD G-2014-13, HEC Montréal, Canada. Submitted to Informs Journal on Computing (2014)
Östergård, P.R.J.: A new algorithm for the maximum-weight clique problem. Nord. J. Comput. 8(4), 424–436 (2001)
Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program. 5(1), 199–215 (1973)
Rönnberg, E., Larsson, T.: Column generation in the integral simplex method. Eur. J. Oper. Res. 192(1), 333–342 (2009)
Rönnberg, E., Larsson, T.: All-integer column generation for set partitioning: basic principles and extensions. Eur. J. Oper. Res. 233(3), 529–538 (2014)
Rosat, S., Elhallaoui, I., Soumis, F., Chakour, D.: Influence of the normalization constraint on the integral simplex using decomposition. Discret. Appl. Math. 217, Part 1, 53–70 (2017)
Rosat, S., Elhallaoui, I., Soumis, F., Lodi, A.: Integral simplex using decomposition with primal cuts. In: Gudmundsson, J., Katajainen, J. (eds.) Experimental Algorithms, Lecture Notes in Computer Science, vol. 8504, pp. 22–33. Springer, New York (2014)
Rozenknop, A., Wolfler Calvo, R., Alfandari, L., Chemla, D., Létocart, L.: Solving the electricity production planning problem by a column generation based heuristic. J. Sched. 16(6), 585–604 (2013)
Salkin, H.M., Koncal, R.D.: Set covering by an all-integer algorithm: computational experience. J. ACM 20(2), 189–193 (1973)
Saxena, A.: Set-partitioning via integral simplex method. Unpublished manuscript, OR Group, Carnegie-Mellon University, Pittsburgh (2003)
Schulz, A.S., Weismantel, R., Ziegler, G.M.: 0/1-integer programming: Optimization and augmentation are equivalent. In: Spirakis, P. (ed.) ESA ’95, LNCS, vol. 979, pp. 473–483. Springer, Berlin (1995)
Spille, B., Weismantel, R.: Primal integer programming. In: Aardal, K., Nemhauser, G., Weismantel, R. (eds.) Discrete Optimization, Handbooks in Operations Research and Management Science, vol. 12, pp. 245–276. Elsevier, Amsterdam (2005)
Stallmann, M.F., Brglez, F.: High-contrast algorithm behavior: observation, hypothesis, and experimental design. In: Proceedings of the 2007 Workshop on Experimental Computer Science, ExpCS ’07. ACM, New York, NY, USA (2007)
Stojković, M., Soumis, F., Desrosiers, J.: The operational airline crew scheduling problem. Transp. Sci. 32(3), 232–245 (1998)
Thompson, G.L.: An integral simplex algorithm for solving combinatorial optimization problems. Comput. Optim. Appl. 22(3), 351–367 (2002)
Towhidi, M., Desrosiers, J., Soumis, F.: The positive edge criterion within COIN-OR’s CLP. Comput. Oper. Res. 49, 41–46 (2014)
Trubin, V.: On a method of solution of integer linear programming problems of a special kind. Sov. Math. Dokl. 10, 1544–1546 (1969)
Young, R.D.: A primal (all-integer) integer programming algorithm. J. Res. Natl. Bur. Stand. B Math. Math. Phys. 69B, 213–250 (1965)
Young, R.D.: A simplified primal (all-integer) integer programming algorithm. Oper. Res. 16(4), 750–782 (1968)
Zaghrouti, A., Soumis, F., El Hallaoui, I.: Integral simplex using decomposition for the set partitioning problem. Oper. Res. 62(2), 435–449 (2014)
Acknowledgements
This work was supported by a Collaborative Research and Development Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Kronos Inc. Samuel Rosat benefitted of a grant from the International Internship Program of the Fonds de Recherche du Québec Nature et Technologies (FRQNT).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rosat, S., Elhallaoui, I., Soumis, F. et al. Integral simplex using decomposition with primal cutting planes. Math. Program. 166, 327–367 (2017). https://doi.org/10.1007/s10107-017-1123-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-017-1123-x