Skip to main content
Log in

On univariate function identification problems

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Applications in the areas of data fitting, forecasting, and estimation naturally lead to a rich class of constrained infinite-dimensional optimization problems over extended real-valued semicontinuous functions. We discuss a framework for dealing with such applications, even in the presence of nearly arbitrary constraints on the functions. We formulate computationally tractable approximating problems relying on piecewise polynomial semicontinuous approximations of the actual functions. The approximations enable the study of evolving problems caused by incrementally arriving data and other information. In contrast to an earlier more general treatment, we focus on optimization over functions defined on a compact interval of the real line, which still addresses a large number of applications. The paper provides an introduction to the subject through simplified derivations and illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The set is closed under the epi-topology as described below.

  2. We recall that the outer limit of a sequence of sets \(\{A^\nu \}_{\nu \in {IN}}\) is the collection of points y to which a subsequence of \(\{y^\nu \}_{\nu \in {IN}}\), with \(y^\nu \in A^\nu \), converges. The inner limit is the points to which a sequence of \(\{y^\nu \}_{\nu \in {IN}}\), with \(y^\nu \in A^\nu \), converges. If both limits exist and are identical, we say that the set is the Painlevé-Kuratowski limit of \(\{A^\nu \}_{\nu \in {IN}}\); see [7, 30].

  3. Exponential epi-splines are essentially unrelated to the exponential splines in [27].

  4. A third equation could be introduced, of a similar type, that would model interest rates and would give the option to discount future prices. This would be useful if the system is used to value financial instruments that are copper-related.

References

  1. Arandiga, F., Cohen, A., Donat, R., Dyn, N.: Interpolation and approximation of piecewise smooth functions. SIAM J. Numer. Anal. 43, 41–57 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atteia, M.: Généralisation de la définition et des propriétés de “splines-fonctions”. Comptes Rendus de l’Académie des Sciences de Paris 260, 3350–3553 (1965)

    MATH  Google Scholar 

  3. Attouch, H., Lucchetti, R., Wets, R.: The topology of the \({\rho }\)-Hausdorff distance. Annali di Matematica pura ed applicata CLX, 303–320 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Attouch, H., Wets, R.: A convergence theory for saddle functions. Trans. Am. Math. Soc. 280(1), 1–41 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Attouch, H., Wets, R.J.B.: A convergence for bivariate functions aimed at the convergence of saddle values. In: Cecconi, J., Zolezzi, T. (eds.) Mathematical Theories of Optimizations, pp. 1–42. Springer, Berlin (1983)

    Google Scholar 

  6. Barnes, R.: Variogram tutorial. Tech. rep., Golden Software, Inc (2002)

  7. Beer, G.: Topologies on Closed and Closed Convex Sets, Mathematics and its Applications, vol. 268. Kluwer, Dordrecht (1992)

    Google Scholar 

  8. Bezhaev, A., Vasilenko, V.: Variational Theory of Splines. Kluwer, Dordrecht (2001)

    Book  MATH  Google Scholar 

  9. Bojanov, B., Hakopian, H., Sahakian, S.: Spline Functions and Multivariate Interpolation. Kluwer, Dordrecht (1993)

    Book  MATH  Google Scholar 

  10. Champion, R., Lenard, C., Mills, T.: A variational approach to splines. ANZIAM J. 42, 119–135 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Clark, I.: Practical Geostatistics. Elsevier, Amsterdam (1979)

    MATH  Google Scholar 

  12. Cressie, N.: Statistics for Spatial Data. Wiley Interscience, Hoboken (1993)

    MATH  Google Scholar 

  13. Cule, M., Samworth, R., Stewart, M.: Rejoinder to maximum likelihood estimation of a multi-dimensional log-concave density. J. R. Stat. Soc. Ser. B 72, 600–607 (2010)

    Article  Google Scholar 

  14. Curry, H., Schoenberg, I.: On spline distributions and their limits: the polya distribution functions. Bull. Am. Math. Soc. 53, 1114 (1947)

    Google Scholar 

  15. Curry, H., Schoenberg, I.: On polya frequency functions IV: the fundamental spline functions and their limits. J. Anal. Math. 17, 71–107 (1966)

    Article  MATH  Google Scholar 

  16. de Boor, C.: Best approximation properties of spline functions of odd degree. J. Math. Mech. 12, 747–749 (1963)

    MathSciNet  MATH  Google Scholar 

  17. Demetriou, I.C., Powell, M.J.D.: Least squares smoothing of univariate data to achieve piecewise monotonicity. IMA J. Numer. Anal. 11(3), 411–432 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Demetriou, I.C., Powell, M.J.D.: The minimum sum of squares change to univariate data that gives convexity. IMA J. Numer. Anal. 11(3), 433–448 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Farouki, R.T., Manni, C., Sampoli, M.L., Sestini, A.: Shape-preserving interpolation of spatial data by pythagorean-hodograph quintic spline curves. IMA J. Numer. Analy. 35, 478–498 (2015)

  20. Feng, Y., Gade, D., Ryan, S., Watson, J., Wets, R., Woodruff, D.: A new approximation method for generating day-ahead load scenarios. In: 2013 IEEE Power & Energy Society General Meeting. IEEE (2013)

  21. Holladay, J.: A smoothest curve approximation. Math. Tables Aids Comput. 11, 233–243 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kincaid, D., Cheney, W.: Numerical Analysis, 2nd edn. Brooks/Cole, Boston (1996)

    MATH  Google Scholar 

  23. Laurent, P.: Approximation et Optimization, Enseignement des Sciences, vol. 13. Hermann (1972)

  24. Lim, E., Glynn, P.W.: Consistency of multidimensional convex regression. Oper. Res. 60, 196–208 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lipman, Y., Levin, D.: Approximating piecewise smooth functions. IMA J. Numer. Anal. 30, 1159–1183 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mammen, E., Thomas-Agnan, C.: Smoothing splines and shape restrictions. Scand. J. Stat. 26(2), 239–252 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. McCartin, B.J.: Theory of exponential splines. J. Approx. Theory 66, 1–23 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Meyer, M.: Constrained penalized splines. Can. J. Stat. 40, 190–206 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nürnberger, G.: Approximation by Spline Functions. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  30. Rockafellar, R., Wets, R.: Variational analysis, Grundlehren der Mathematischen Wissenschaft, vol. 317, 3rd printing-2009 edn. Springer (1998)

  31. Royset, O.J., Sukumar, N., Wets, R.J.B.: Uncertainty quantification using exponential epi-splines. In: Proceedings of the International Conference on Structural Safety and Reliability, Columbia Univeristy, NY (2013)

  32. Royset, O.J., Wets, R.: Fusion of hard and soft information in nonparametric density estimation. Eur. J. Oper. Res. 247(2), 532–547 (2015)

  33. Royset, O.J., Wets, R.J.B.: From data to assessments and decisions: Epi-spline technology. In: Newman, A. (ed.) INFORMS Tutorials, pp. 27–53. INFORMS, Catonsville (2014)

  34. Royset, J.O., Wets, R.J-B.: Multivariate epi-splines and evolving function identification problems. Set Valued Var. Anal. 24(4), 517–545 (2016)

  35. Schoenberg, I.: Contributions to the problem of approximation of equidistant data by analytic functions. Q. Appl. Math. 4, 45–99, 112–141 (1946)

  36. Schumaker, L.I.: On shape preserving quadratic spline interpolation. SIAM J. Numer. Anal. 20(4), 854–864 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shapiro, A., Botha, J.: Variogram fitting with a general class of conditional nonnegative definite functions. Comput. Stat. Data Anal. 11, 87–96 (1991)

    Article  MATH  Google Scholar 

  38. Wackemagel, H.: Multivariate Geostatistics. Springer, Berlin (1993)

    Google Scholar 

  39. Walther, G.: Inference and modeling with log-concave distributions. Stat. Sci. 24(3), 319–327 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wets, R., Bianchi, S.: Term and volatility structures. In: Zenios, S., Ziemba, W. (eds.) Handbook of Asset and Liability Management, pp. 26–68. Elsevier, Amsterdam (2006)

    Google Scholar 

  41. Wets, R., Bianchi, S., Yang, L.: Serious zero-curves. EpiRisk: http://epirisk.com/epicurves.php4 (2002)

  42. Wets, R., Rios, I.: Modeling and estimating commodity prices: copper prices. Math. Financ. Econ. 9, 247–270 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wets, R., Sood, R.: Information fusion. http://www.math.ucdavis.edu/~prop01 (2011)

  44. Wright, R.: Local spline approximation of discontinuous functions and location of discontinuities, given low-order fourier coefficient information. J. Comput. Appl. Math. 164–165, 783–795 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

In part, this work was carried out while the first author was on a sabbatical leave at the UC Davis, Department of Mathematics. The authors thank R. Sood, M. Casey, I. Rios, D. Woodruff, and N. Sukumar for invaluable support and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes O. Royset.

Additional information

This material is based upon work supported in part by the U. S. Army Research Laboratory and the U. S. Army Research Office under Grant Numbers 00101-80683, W911NF-10-1-0246 and W911NF-12-1-0273.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Royset, J.O., Wets, R.JB. On univariate function identification problems. Math. Program. 168, 449–474 (2018). https://doi.org/10.1007/s10107-017-1130-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1130-y

Keywords

Mathematics Subject Classification

Navigation