Skip to main content
Log in

Ellipsoidal mixed-integer representability

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Representability results for mixed-integer linear systems play a fundamental role in optimization since they give geometric characterizations of the feasible sets that can be formulated by mixed-integer linear programming. We consider a natural extension of mixed-integer linear systems obtained by adding just one ellipsoidal inequality. The set of points that can be described, possibly using additional variables, by these systems are called ellipsoidal mixed-integer representable. In this work, we give geometric conditions that characterize ellipsoidal mixed-integer representable sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. Springer, Berlin (2014)

    MATH  Google Scholar 

  2. Dantzig, G.: Discrete variable extremum problems. Oper. Res. 5, 266–277 (1957)

    Article  MathSciNet  Google Scholar 

  3. Del Pia, A., Dey, S., Molinaro, M.: Mixed-integer quadratic programming is in NP. Math. Program. 162(1), 225–240 (2017)

    Article  MathSciNet  Google Scholar 

  4. Del Pia, A., Poskin, J.: On the mixed binary representability of ellipsoidal regions. In: Proceedings of IPCO 2016, LNCS, vol. 9682, pp. 214–225 (2016)

  5. Glover, F.: New results on equivalent integer programming formulations. Math. Program. 8, 84–90 (1975)

    Article  MathSciNet  Google Scholar 

  6. Ibaraki, T.: Integer programming formulation of combinatorial optimization problems. Discret. Math. 16, 39–52 (1976)

    Article  MathSciNet  Google Scholar 

  7. Jeroslow, R.: Representations of unbounded optimizations as integer programs. J. Optim. Theory Appl. 30, 339–351 (1980)

    Article  MathSciNet  Google Scholar 

  8. Jeroslow, R.: Representability in mixed integer programming, I: characterization results. Discret. Appl. Math. 17, 223–243 (1987)

    Article  MathSciNet  Google Scholar 

  9. Jeroslow, R., Lowe, J.: Modelling with integer variables. Math. Program. Study 22, 167–184 (1984)

    Article  MathSciNet  Google Scholar 

  10. Meyer, R.: Integer and mixed-integer programming models: General properties. J.Optim. Theory Appl. 16(3/4), 191–206 (1975)

    Article  MathSciNet  Google Scholar 

  11. Meyer, R.: Mixed-integer minimization models for piecewise-linear functions of a single variable. Discret. Math. 16, 163–171 (1976)

    Article  MathSciNet  Google Scholar 

  12. Meyer, R., Thakkar, M., Hallman, W.: Rational mixed integer and polyhedral union minimization models. Math. Oper. Res. 5, 135–146 (1980)

    Article  MathSciNet  Google Scholar 

  13. Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  14. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

    MATH  Google Scholar 

  15. Vielma, J.: Mixed integer linear programming formulation techniques. SIAM Rev. 57(I), 3–57 (2015)

    Article  MathSciNet  Google Scholar 

  16. Villaverde, K., Kosheleva, O., Ceberio, M.: Why ellipsoid constraints, ellipsoid clusters, and Riemannian space-time: Dvoretzky’s theorem revisited. In: Ceberio, M., Kreinovich, V. (eds.) Constraint Programming and Decision Making, Studies in Computational Intelligence, pp. 203–207. Springer, Berlin (2014)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Poskin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Pia, A., Poskin, J. Ellipsoidal mixed-integer representability. Math. Program. 172, 351–369 (2018). https://doi.org/10.1007/s10107-017-1196-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1196-6

Keywords

Mathematics Subject Classification