Skip to main content
Log in

Scenario reduction revisited: fundamental limits and guarantees

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

The goal of scenario reduction is to approximate a given discrete distribution with another discrete distribution that has fewer atoms. We distinguish continuous scenario reduction, where the new atoms may be chosen freely, and discrete scenario reduction, where the new atoms must be chosen from among the existing ones. Using the Wasserstein distance as measure of proximity between distributions, we identify those n-point distributions on the unit ball that are least susceptible to scenario reduction, i.e., that have maximum Wasserstein distance to their closest m-point distributions for some prescribed \(m<n\). We also provide sharp bounds on the added benefit of continuous over discrete scenario reduction. Finally, to our best knowledge, we propose the first polynomial-time constant-factor approximations for both discrete and continuous scenario reduction as well as the first exact exponential-time algorithms for continuous scenario reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95(1), 3–51 (2003)

    Article  MathSciNet  Google Scholar 

  2. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-of-squares clustering. Mach. Learn. 75(2), 245–248 (2009)

    Article  Google Scholar 

  3. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for \(k\)-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)

    Article  MathSciNet  Google Scholar 

  4. Charikar, M., Li, S.: A dependent LP-rounding approach for the \(k\)-median problem. In: Proceedings of the 39th International Colloquium Conference on Automata, Languages, and Programming, pp. 194–205 (2012)

  5. Conejo, A., Carrión, M., Morales, J.: Decision Making Under Uncertainty in Electricity Markets. Springer, Berlin (2010)

    Book  Google Scholar 

  6. Dasgupta, S.: CSE 291: Topics in unsupervised learning. http://cseweb.ucsd.edu/~dasgupta/291-unsup/ (2008)

  7. Drezner, Z., Hamacher, H.: Facility Location: Applications and Theory. Springer, Berlin (2004)

    MATH  Google Scholar 

  8. Dupačová, J.: Stability and sensitivity-analysis for stochastic programming. Ann. Oper. Res. 27(1), 115–142 (1990)

    Article  MathSciNet  Google Scholar 

  9. Dupačová, J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic programming: an approach using probability metrics. Math. Program. 95(3), 493–511 (2003)

    Article  MathSciNet  Google Scholar 

  10. Gao, R., Kleywegt, A.: Distributionally robust stochastic optimization with Wasserstein distance. (2016) arXiv:1604.02199

  11. Graf, S., Luschgy, H.: Foundations of Quantization for Probability Distributions. Springer, Berlin (2000)

    Book  Google Scholar 

  12. Gray, R.M.: Toeplitz and Circulant Matrices: A Review. Now Publishers, Breda (2006)

    MATH  Google Scholar 

  13. Hanasusanto, G., Kuhn, D.: Conic programming reformulations of two-stage distributionally robust linear programs over Wasserstein balls. (2016) arXiv:1609.07505

  14. Hanasusanto, G., Kuhn, D., Wiesemann, W.: \(k\)-adaptability in two-stage robust binary programming. Oper. Res. 63(4), 877–891 (2015)

    Article  MathSciNet  Google Scholar 

  15. Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. 24(2), 187–206 (2003)

    Article  MathSciNet  Google Scholar 

  16. Heitsch, H., Römisch, W.: A note on scenario reduction for two-stage stochastic programs. Oper. Res. Lett. 35(6), 731–738 (2007)

    Article  MathSciNet  Google Scholar 

  17. Hochreiter, R., Pflug, G.: Financial scenario generation for stochastic multi-stage decision processes as facility location problems. Ann. Oper. Res. 152(1), 257–272 (2007)

    Article  MathSciNet  Google Scholar 

  18. Hopcroft, J., Kannan, R.: Computer science theory for the information age. (2012) https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/

  19. Jain, A.: Data clustering: 50 years beyond \(k\)-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  20. Jain, A., Murty, M., Flynn, P.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  21. Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.: A local search approximation algorithm for \(k\)-means clustering. Comput. Geom. 28(2), 89–112 (2004)

    Article  MathSciNet  Google Scholar 

  22. Kariv, O., Hakimi, S.: An algorithmic approach to network location problems. II: The \(p\)-medians. SIAM J. Appl. Math. 37(3), 539–560 (1979)

    Article  MathSciNet  Google Scholar 

  23. Li, S., Svensson, O.: Approximating \(k\)-median via pseudo-approximation. SIAM J. Comput. 45(2), 530–547 (2016)

    Article  MathSciNet  Google Scholar 

  24. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  25. Löhndorf, N.: An empirical analysis of scenario generation methods for stochastic optimization. Eur. J. Oper. Res. 255(1), 121–132 (2016)

    Article  MathSciNet  Google Scholar 

  26. Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar \(k\)-means problem is NP-hard. In: Proceedings of the 3rd International Workshop on Algorithms and Computation, pp. 274–285 (2009)

  27. Mohajerin Esfahani, P., Kuhn, D.: Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations. Math. Program. (2017). https://doi.org/10.1007/s10107-017-1172-1

  28. Parvania, M., Fotuhi-Firuzabad, M.: Demand response scheduling by stochastic SCUC. IEEE Trans. Smart Grid 1(1), 89–98 (2010)

    Article  Google Scholar 

  29. Pflug, G.: Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Program. 89(2), 251–271 (2001)

    Article  MathSciNet  Google Scholar 

  30. Pflug, G., Pichler, A.: Approximations for probabilitydistributions and stochastic optimization problems. In: Bertocchi, M., Consigli, G., Dempster, M.A.H. (eds.) Stochastic Optimization Methods in Finance and Energy: New Financial Products and Energy Market Strategies, pp. 343–387. Springer, Berlin (2011)

    Chapter  Google Scholar 

  31. Rachev, S., Römisch, W.: Quantitative stability in stochastic programming: the method of probability metrics. Math. Oper. Res. 27(4), 792–818 (2002)

    Article  MathSciNet  Google Scholar 

  32. Römisch, W., Schultz, R.: Stability analysis for stochastic programs. Ann. Oper. Res. 30(1), 241–266 (1991)

    Article  MathSciNet  Google Scholar 

  33. Römisch, W., Wets, R.: Stability of \(\varepsilon \)-approximate solutions to convex stochastic programs. SIAM J. Optim. 18(3), 961–979 (2007)

    Article  MathSciNet  Google Scholar 

  34. Rubinstein, R., Kroese, D.: Simulation and the Monte Carlo Method. Wiley, Hoboken (2007)

    Book  Google Scholar 

  35. Ruiz, P., Philbrick, C., Zak, E., Cheung, K., Sauer, P.: Uncertainty management in the unit commitment problem. IEEE Trans. Power Syst. 24(2), 642–651 (2009)

    Article  Google Scholar 

  36. Steele, M.: The Cauchy–Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  37. Stockbridge, R., Bayraksan, G.: A probability metrics approach for reducing the bias of optimality gap estimators in two-stage stochastic linear programming. Math. Program. 142(1), 107–131 (2013)

    Article  MathSciNet  Google Scholar 

  38. Zhao, C., Guan, Y.: Data-driven risk-averse stochastic optimization with Wasserstein metric. (2015) Available on Optimization Online

Download references

Acknowledgements

The authors are indebted to the referees and the guest editors for their comments that considerably improved the manuscript. This research was funded by the SNSF Grant BSCGI0_157733 and the EPSRC Grants EP/M028240/1 and EP/M027856/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Kuhn.

Appendix: Auxiliary results

Appendix: Auxiliary results

The proof of Theorem 2 relies on the following two lemmas.

Lemma 1

The semidefinite program (6) admits an optimal solution \((\tau , \mathbf {S})\) with \(\mathbf {S} = \alpha \mathbb {I} + \beta \varvec{11}^\top \) for some \(\alpha , \beta \in \mathbb {R}\).

Proof

Let \((\tau , \mathbf {S}^\star )\) be any optimal solution to (6), which exists because (6) has a continuous objective function and a compact feasible set, and denote by \(\mathfrak {S}\) the set of all permutations of I. For any \(\sigma \in \mathfrak {S}\), the permuted solution \((\tau , \mathbf {S}^\sigma )\), with \(s^\sigma _{ij} = s^\star _{\sigma (i)\sigma (j)}\) is also optimal in (6). Note first that \((\tau , \mathbf {S}^\sigma )\) is feasible in (6) because

$$\begin{aligned} \begin{aligned}&\tau \le \sum _{j \in J} \frac{1}{\vert I_j \vert ^2} \sum _{i \in I_j} \Bigg ( \vert I_j \vert ^2 s^\sigma _{ii} - 2\vert I_j \vert \sum _{k \in I_j} s^\sigma _{ik} + \sum _{k \in I_j} s^\sigma _{kk} + \sum _{\begin{array}{c} k,k^\prime \in I_j \\ k \ne k^\prime \end{array}} s^\sigma _{k k^\prime } \Bigg ) \\ \iff&\tau \le \sum _{j \in J} \frac{1}{\vert I^\sigma _j \vert ^2} \sum _{i \in I^\sigma _j} \Bigg ( \vert I^\sigma _j \vert ^2 s^\star _{ii} - 2\vert I^\sigma _j \vert \sum _{k \in I_j} s^\star _{ik} + \sum _{k \in I_j} s^\star _{kk} + \sum _{\begin{array}{c} k,k^\prime \in I_j \\ k \ne k^\prime \end{array}} s^\star _{k k^\prime } \Bigg ) , \end{aligned} \end{aligned}$$

where the index sets \(I^\sigma _j=\{\sigma (i):~ i \in I_j \}\) for \(j\in J\) form an m-set partition from within \(\mathfrak {P}(I,m)\), and because \(\mathbf {S}^\sigma \succeq \varvec{0}\) and \(s^\sigma _{ii} = s^\star _{\sigma (i)\sigma (i)}\le 1\) for all \(i\in I\) by construction. Moreover, it is clear that \((\tau , \mathbf {S}^\sigma )\) and \((\tau , \mathbf {S}^\star )\) share the same objective value in (6). Thus, \((\tau , \mathbf {S}^\sigma )\) is optimal in (6) for every \(\sigma \in \mathfrak {S}\).

The convexity of problem (6) implies that \((\tau ,\mathbf {S})\) with \(\mathbf {S}=\frac{1}{n!} \sum _{\sigma \in \mathfrak {S}} \mathbf {S}^\sigma \) is also optimal in (6). The claim follows by noting that \(\mathbf {S}\) is invariant under permutations of the coordinates and thus representable as \(\alpha \mathbb {I} + \beta \varvec{11}^\top \) for some \(\alpha , \beta \in \mathbb {R}\). \(\square \)

Lemma 2

For \(\alpha , \beta \in \mathbb {R}\) the eigenvalues of \(\mathbf {S} = \alpha \mathbb {I} + \beta \varvec{11}^\top \in \mathbb {S}^n\) are given by \(\alpha + n \beta \) (with multiplicity 1) and \(\alpha \) (with multiplicity \(n-1\)).

Proof

Note that \(\mathbf {S}\) is a circulant matrix, meaning that each of its rows coincides with the preceding row rotated by one element to the right. Thus, the eigenvalues of \(\mathbf {S}\) are given by \(\alpha + \beta (1 + \rho _j^1 + \ldots \rho _j^{n-1})\), \(j=0,\ldots ,n-1\), where \(\rho _j=e^{2\pi i j/n}\) and i denotes the imaginary unit; see e.g. Gray [12]. For \(j=0\) we then obtain the eigenvalue \(\alpha + n\beta \), and for \(j= 1,\ldots , n-1\) we obtain the other \(n-1\) eigenvalues, all of which equal \(\alpha \) because \(\sum _{k=0}^{n-1}e^{2\pi i jk/n}=(1-e^{2\pi i j})/(1-e^{2\pi i j/n})=0\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rujeerapaiboon, N., Schindler, K., Kuhn, D. et al. Scenario reduction revisited: fundamental limits and guarantees. Math. Program. 191, 207–242 (2022). https://doi.org/10.1007/s10107-018-1269-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1269-1

Keywords