Skip to main content
Log in

Lopsided convergence: an extension and its quantification

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Much of the development of lopsided convergence for bifunctions defined on product spaces was in response to motivating applications. A wider class of applications requires an extension that would allow for arbitrary domains, not only product spaces. This leads to an extension of the definition and its implications that include the convergence of solutions and optimal values of a broad class of minsup problems. In the process we relax the definition of lopsided convergence even for the classical situation of product spaces. We now capture applications in optimization under stochastic ambiguity, Generalized Nash games, and many others. We also introduce the lop-distance between bifunctions, which leads to the first quantification of lopsided convergence. This quantification facilitates the study of convergence rates of methods for solving a series of problems including minsup problems, Generalized Nash games, and various equilibrium problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We prefer “minsup problem” to “minimax problem” as the inner maximization may not be attained in much of our development.

  2. The need to check subsequences \(N\in \mathcal{N}_\infty ^{\scriptscriptstyle \#}\) is understood, but not explicitly stated in these references.

  3. Statements about convexity/concavity are the only ones that require a linear space in this paper.

  4. We deduce from a counterexample in [10] that the separability assumption cannot be relaxed.

  5. In parametric optimization and elsewhere sup-projections of bifunctions are sometimes called optimal value functions.

  6. Although the topology induced by the aw-distance is the same for any point selected, the value of the distance will depend on this choice; see [5, 27] and [26, Section 7.J] for details.

  7. A metric space is finitely compact if all its closed balls are compact.

  8. \(D:C\rightrightarrows Y\) is inner semicontinuous if for every \(x^\nu \in C \rightarrow x\in C\), \(\mathop {\mathrm{InnLim}}\nolimits D(x^\nu ) \supset D(x).\)

References

  1. Attouch, H.: Variational Convergence for Functions and Operators, Applicable Mathematics Sciences. Pitman, Totowa (1984)

    MATH  Google Scholar 

  2. Attouch, H., Azé, D., Wets, R.J-B: Convergence of convex-concave saddle functions: continuity properties of the Legendre-Fenchel transform with applications to convex programming and mechanics. Ann. l’Inst. H. Poincaré Anal. Nonlinéaire 5, 537–572 (1988)

  3. Attouch, H., Wets, R.J-B: Convergence des points min/sup et de points fixes. C. R. l’Acad. Sci. Paris 296, 657–660 (1983)

    MathSciNet  Google Scholar 

  4. Attouch, H., Wets, R.J-B: A convergence theory for saddle functions. Trans. Am. Math. Soc. 280(1), 1–41 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Attouch, H., Wets, R.J-B: Quantitative stability of variational systems: I. The epigraphical distance. Trans. Am. Math. Soc. 328(2), 695–729 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Aubin, J.-P.: Mathematical Methods of Game and Economic Theory. North-Holland, Amsterdam (1982)

    Google Scholar 

  7. Aubin, J.-P., Ekeland, I.: Applied Nonlinear Analysis. Issue 1237 of Pure and Applied Mathematics. Wiley, New York (1984)

    Google Scholar 

  8. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Basel (1990)

    MATH  Google Scholar 

  9. Beer, G.: Topologies on Closed and Closed Convex Sets, Volume 268 of Mathematics and Its Applications. Kluwer, Dordrecht (1992)

    Google Scholar 

  10. Beer, G., Rockafellar, R.T., Wets, R.J-B: A characterization of epi-convergence in terms of convergence of level sets. Proc. Am. Math. Soc. 116(3), 753–761 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  12. Deride, J., Jofré, A., Wets, R.J-B: Solving deterministic and stochastic equilibrium problems via augmented Walrasian. Comput. Econ. (2018, to appear)

  13. El Ghaoui, L., Calafiore, G.C.: Optimization Models. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  14. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 175(1), 177–221 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Facchinei, F., Kanzow, C.: Penalty methods for the solution of generalized Nash equilibrium problems. SIAM J. Optim. 20(5), 2228–2253 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Facchinei, F., Pang, J.-S.: Exact penalty functions for generalized Nash problems. In: Di Pillo, G., Roma, M. (eds.) Large-Scale Nonlinear Optimization, pp. 115–126. Springer, Berlin (2006)

    Chapter  Google Scholar 

  17. Fukushima, M., Pang, J.-S.: Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. CMS 2, 21–56 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gürkan, G., Pang, J.-S.: Approximations of Nash equilibria. Math. Program. B 117, 223–253 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jofré, A., Wets, R.J-B: Continuity properties of Walras equilibrium points. Ann. Oper. Res. 114, 229–243 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jofré, A., Wets, R.J-B: Variational convergence of bivariate functions: lopsided convergence. Math. Program. B 116, 275–295 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jofré, A., Wets, R.J-B: Variational convergence of bifunctions: motivating applications. SIAM J. Optim. 24(4), 1952–1979 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Morgan, J., Scalzo, V.: Variational stability of social Nash equilibria. Int. Game Theory Rev. 10(1), 17–24 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mosco, U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3(4), 510–585 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nikaido, H., Isoda, K.: Note on noncooperative convex games. Pac. J. Math. 5, 807–815 (1955)

    Article  MATH  Google Scholar 

  25. Rockafellar, R.T.: Convex Analysis. Vol. 28 of Princeton Math. Series. Princeton University Press, Princeton (1970)

    Google Scholar 

  26. Rockafellar, R.T., Wets, R.J-B: Variational Analysis, Volume 317 of Grundlehren der Mathematischen Wissenschaft, 3rd printing-2009 edition. Springer, Berlin (1998)

  27. Royset, J.O.: Approximations and solution estimates in optimization. Math. Program. (2018). https://doi.org/10.1007/s10107-017-1165-0

    MathSciNet  MATH  Google Scholar 

  28. Royset, J.O., Wets, R.J-B: Optimality functions and lopsided convergence. J. Optim. Theory Appl. 169(3), 965–983 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Royset, J.O., Wets, R.J-B: Variational theory for optimization under stochastic ambiguity. SIAM J. Optim. 27(2), 1118–1149 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Stein, O.: Bi-level Strategies in Semi-Infinite Programming. Kluwer, Dordrecht (2003)

    Book  MATH  Google Scholar 

  31. Sun, H., Xu, H.: Convergence analysis for distributionally robust optimization and equilibrium problems. Math. Oper. Res. 41, 377–401 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Walkup, D., Wets, R.J-B: Continuity of some convex-cone-valued mappings. Proc. Am. Math. Soc. 18, 229–235 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, J., Xu, H., Zhang, L.: Quantitative stability analysis for distributionally robust optimization with moment constraints. SIAM J. Optim. 26(3), 1855–1882 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported in part by DARPA under Grant HR0011-14-1-0060 and the U.S. Office of Naval Research under Grant No. N00014-17-2372.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes O. Royset.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Royset, J.O., Wets, R.JB. Lopsided convergence: an extension and its quantification. Math. Program. 177, 395–423 (2019). https://doi.org/10.1007/s10107-018-1275-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1275-3

Keywords

Mathematics Subject Classification

Navigation