Skip to main content
Log in

A strategy of global convergence for the affine scaling algorithm for convex semidefinite programming

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

The affine scaling algorithm is one of the earliest interior point methods developed for linear programming. This algorithm is simple and elegant in terms of its geometric interpretation, but it is notoriously difficult to prove its convergence. It often requires additional restrictive conditions such as nondegeneracy, specific initial solutions, and/or small step length to guarantee its global convergence. This situation is made worse when it comes to applying the affine scaling idea to the solution of semidefinite optimization problems or more general convex optimization problems. In (Math Program 83(1–3):393–406, 1998), Muramatsu presented an example of linear semidefinite programming, for which the affine scaling algorithm with either short or long step converges to a non-optimal point. This paper aims at developing a strategy that guarantees the global convergence for the affine scaling algorithm in the context of linearly constrained convex semidefinite optimization in a least restrictive manner. We propose a new rule of step size, which is similar to the Armijo rule, and prove that such an affine scaling algorithm is globally convergent in the sense that each accumulation point of the sequence generated by the algorithm is an optimal solution as long as the optimal solution set is nonempty and bounded. The algorithm is least restrictive in the sense that it allows the problem to be degenerate and it may start from any interior feasible point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizadeh, F., Haeberly, J.P.A., Overton, M.L.: Primal-dual interior-point methods for semidefinite programming: convergence rates, stability and numerical results. SIAM J. Optim. 8, 746–768 (1998)

    Article  MathSciNet  Google Scholar 

  2. Barnes, E.R.: A variation on Karmarkar’s algorithm for solving linear programming problems. Math. Program. 36, 174–182 (1986)

    Article  MathSciNet  Google Scholar 

  3. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  5. Dikin, I.I.: Iterative solution of problems of linear and quadratic programming. Sov. Math. Dokl. 8, 674–675 (1967). (in Russian)

    MathSciNet  MATH  Google Scholar 

  6. Faybusovich, L.: Dikin’s algorithm for matrix linear programming problems. In: System Modelling and Optimization, Springer, pp. 237–247 (1994)

  7. Gonzaga, C.C., Carlos, L.A.: A primal affine scaling algorithm for linearly constrained convex programs. Tech. Report ES-238/90, Department of Systems Engineering and Computer Science, COPPE Federal University of Rio de Janeiro, Rio de Janeiro (1990)

  8. Graña Drummond, L.M., Iusem, A.N., Svaiter, B.F.: On the central path for nonlinear semidefinite programming. RAIRO Oper. Res. 34, 331–345 (2000)

    Article  MathSciNet  Google Scholar 

  9. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  10. Halická, M., de Klerk, E., Roos, C.: On the convergence of the central path in semidefinite optimization. SIAM J. Optim. 12, 1090–1099 (2002)

    Article  MathSciNet  Google Scholar 

  11. Halická, M., Trnovská, M.: Limiting behavior and analyticity of weighted central paths in semidefinite programming. Optim. Methods Softw. 25, 247–262 (2010)

    Article  MathSciNet  Google Scholar 

  12. Li, L., Toh, K.C.: A polynomial-time inexact primal-dual infeasible path-following algorithm for convex quadratic SDP. Pac. J. Optim. 7(1), 43–61 (2011)

    MathSciNet  MATH  Google Scholar 

  13. López, J., Ramírez, H.C.: On the central paths and cauchy trajectories in semidefinite programming. Kybernetika 46, 524–535 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Losert, V., Akin, E.: Dynamics of games and genes: discrete versus continuous time. J. Math. Biol. 17, 241–251 (1983)

    Article  MathSciNet  Google Scholar 

  15. Lu, Z., Monteiro, R.D.C.: Limiting behavior of the Alizadeh–Haeberly–Overton weighted paths in semidefinite programming. Optim. Methods Softw. 22, 849–870 (2007)

    Article  MathSciNet  Google Scholar 

  16. Luo, Z.Q., Sturm, J.F., Zhang, S.Z.: Superlinear convergence of a symmetric primal-dual path following algorithm for semidefinite programming. SIAM J. Optim. 8(1), 59–81 (1998)

    Article  MathSciNet  Google Scholar 

  17. Monteiro, R.D.C.: Primal-dual path-following algorithms for semidefinite programming. SIAM J. Optim. 7, 663–678 (1997)

    Article  MathSciNet  Google Scholar 

  18. Monteiro, R.D.C., Wang, Y.: Trust region affine scaling algorithms for linearly constrained convex and concave programs. Math. Program. 80(3), 283–313 (1998)

    Article  MathSciNet  Google Scholar 

  19. Monteiro, R.D.C., Zhang, Y.: A unified analysis for a class of long-step primal–dual path-following interior-point algorithms for semidefinite programming. Math. Program. 81(3), 281–299 (1998)

    Article  MathSciNet  Google Scholar 

  20. Muramatsu, M.: Affine scaling algorithm fails for semidefinite programming. Math. Program. 83(1–3), 393–406 (1998)

    MathSciNet  MATH  Google Scholar 

  21. Nie, J.W., Yuan, Y.X.: A predictorcorrector algorithm for QSDP combining Dikin-type and Newton centering steps. Ann. Oper. Res. 103, 115–133 (2001)

    Article  MathSciNet  Google Scholar 

  22. Renegar, J., Sondjaja, M.: A polynomial-time affine-scaling method for semidefinite and hyperbolic programming arXiv: 1410.6734 (2014)

  23. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  24. Sim, C.-K., Zhao, G.: Asymptotic behavior of HKM paths in interior point methods for monotone semidefinite linear complementarity problems: general theory. J. Optim. Theory Appl. 137, 11–25 (2008)

    Article  MathSciNet  Google Scholar 

  25. Sturm, J.F., Zhang, S.: Symmetric primal–dual path-following algorithms for semidefinite programming. Appl. Numer. Math. 29(3), 301–315 (1999)

    Article  MathSciNet  Google Scholar 

  26. Sun, J.: A convergence proof for an affine scaling algorithm for convex quadratic programming without nondegeneracy assumptions. Math. Program. 60, 69–79 (1993)

    Article  MathSciNet  Google Scholar 

  27. Sun, J.: A convergence analysis for a convex version of Dikin’s algorithm. Ann. Oper. Res. 62(1), 357–374 (1996)

    Article  MathSciNet  Google Scholar 

  28. Todd, M.J., Toh, K.C., Tütüncü, R.H.: On the Nesterov–Todd direction in semidefinite programming. SIAM J. Optim. 8, 769–796 (1998)

    Article  MathSciNet  Google Scholar 

  29. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3a MATLAB software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11(1–4), 545–581 (1999)

    Article  MathSciNet  Google Scholar 

  30. Toh, K.C.: An inexact primal–dual path following algorithm for convex quadratic SDP. Math. Program. 112(1), 221–254 (2008)

    Article  MathSciNet  Google Scholar 

  31. Toh, K.C., Tütüncü, R.H., Todd, M.J.: Inexact primal–dual path-following algorithms for a special class of convex quadratic SDP and related problems. Pac. J. Optim. 3(1), 135–164 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Tseng, P., Bomze, I.M., Schachinger, W.: A first-order interior point method for linearly constrained smooth optimization. Math. Program. 127, 399–424 (2011)

    Article  MathSciNet  Google Scholar 

  33. Vanderbei, R.J., Meketon, M.S., Freedman, B.A.: A modification of Karmarkar’s linear programming algorithm. Algorithmica 1, 395–407 (1986)

    Article  MathSciNet  Google Scholar 

  34. Yamashita, M., Fujisawa, K., Kojima, M.: Implementation and evaluation of SDPA 6.0 (semidefinite programming algorithm 6.0). Optim. Methods Softw. 18(4), 491–505 (2003)

    Article  MathSciNet  Google Scholar 

  35. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, vol. 27. Springer, Berlin (2012)

    MATH  Google Scholar 

  36. Yamashita, H., Yabe, H.: Local and superlinear convergence of a primal–dual interior point method for nonlinear semidefinite programming. Math. Program. 132(1–2), 1–30 (2012)

    Article  MathSciNet  Google Scholar 

  37. Yamashita, H., Yabe, H., Harada, K.: A primalCdual interior point method for nonlinear semidefinite programming. Math. Program. 135(1–2), 89–121 (2012)

    Article  MathSciNet  Google Scholar 

  38. Zhang, Y.: On extending some primal–dual interior-point algorithms from linear programming to semidefinite programming. SIAM J. Optim. 8, 365–386 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the two anonymous referees for their constructive comments and suggestions on the earlier version of this paper. We really appreciate their valuable inputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Zhi Liao.

Additional information

The work of L.-Z. Liao was supported in part by grants from Hong Kong Baptist University (FRG) and General Research Fund (GRF) of Hong Kong. The work of J. Sun was partially supported by Australia Research Council under grant DP160102819.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, X., Liao, LZ. & Sun, J. A strategy of global convergence for the affine scaling algorithm for convex semidefinite programming. Math. Program. 179, 1–19 (2020). https://doi.org/10.1007/s10107-018-1314-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1314-0

Keywords

Mathematics Subject Classification

Navigation