Skip to main content
Log in

Stationarity conditions and constraint qualifications for mathematical programs with switching constraints

With applications to either-or-constrained programming

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In optimal control, switching structures demanding at most one control to be active at any time instance appear frequently. Discretizing such problems, a so-called mathematical program with switching constraints is obtained. Although these problems are related to other types of disjunctive programs like optimization problems with complementarity or vanishing constraints, their inherent structure makes a separate consideration necessary. Since standard constraint qualifications are likely to fail at the feasible points of switching-constrained optimization problems, stationarity notions which are weaker than the associated Karush–Kuhn–Tucker conditions need to be investigated in order to find applicable necessary optimality conditions. Furthermore, appropriately tailored constraint qualifications need to be formulated. In this paper, we introduce suitable notions of weak, Mordukhovich-, and strong stationarity for mathematical programs with switching constraints and present some associated constraint qualifications. Our findings are exploited to state necessary optimality conditions for (discretized) optimal control problems with switching constraints. Furthermore, we apply our results to optimization problems with either-or-constraints. First, a novel reformulation of such problems using switching constraints is presented. Second, the derived surrogate problem is exploited to obtain necessary optimality conditions for the original program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Achtziger, W., Kanzow, C.: Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications. Math. Program. Ser. A 114(1), 69–99 (2008). https://doi.org/10.1007/s10107-006-0083-3

    Article  MathSciNet  MATH  Google Scholar 

  2. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, New York (1993)

    MATH  Google Scholar 

  3. Benko, M., Gfrerer, H.: On estimating the regular normal cone to constraint systems and stationarity conditions. Optimization 66(1), 61–92 (2017). https://doi.org/10.1080/02331934.2016.1252915

    Article  MathSciNet  MATH  Google Scholar 

  4. Benko, M., Gfrerer, H.: New verifiable stationarity concepts for a class of mathematical programs with disjunctive constraints. Optimization 67(1), 1–23 (2018). https://doi.org/10.1080/02331934.2017.1387547

    Article  MathSciNet  MATH  Google Scholar 

  5. Burdakov, O.P., Kanzow, C., Schwartz, A.: Mathematical programs with cardinality constraints: reformulation by complementarity-type conditions and a regularization method. SIAM J. Optim. 26(1), 397–425 (2016). https://doi.org/10.1137/140978077

    Article  MathSciNet  MATH  Google Scholar 

  6. Červinka, M., Kanzow, C., Schwartz, A.: Constraint qualifications and optimality conditions for optimization problems with cardinality constraints. Math. Program. Ser. A 160(1), 353–377 (2016). https://doi.org/10.1007/s10107-016-0986-6

    Article  MathSciNet  MATH  Google Scholar 

  7. Clason, C., Rund, A., Kunisch, K., Barnard, R.C.: A convex penalty for switching control of partial differential equations. Syst. Control Lett. 89, 66–73 (2016). https://doi.org/10.1016/j.sysconle.2015.12.013

    Article  MathSciNet  MATH  Google Scholar 

  8. Clason, C., Rund, A., Kunisch, K.: Nonconvex penalization of switching control of partial differential equations. Syst. Control Lett. 106, 1–8 (2017). https://doi.org/10.1016/j.sysconle.2017.05.006

    Article  MathSciNet  MATH  Google Scholar 

  9. Dempe, S., Schreier, H.: Operations Research. Teubner, Wiesbaden (2006)

    MATH  Google Scholar 

  10. Flegel, M.L., Kanzow, C.: Abadie-type constraint qualification for mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 124(3), 595–614 (2005a). https://doi.org/10.1007/s10957-004-1176-x

    Article  MathSciNet  MATH  Google Scholar 

  11. Flegel, M.L., Kanzow, C.: On M-stationary points for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 310(1), 286–302 (2005b). https://doi.org/10.1016/j.jmaa.2005.02.011

    Article  MathSciNet  MATH  Google Scholar 

  12. Flegel, M.L., Kanzow, C.: On the Guignard constraint qualification for mathematical programs with equilibrium constraints. Optimization 54(6), 517–534 (2005c). https://doi.org/10.1080/02331930500342591

    Article  MathSciNet  MATH  Google Scholar 

  13. Flegel, M.L., Kanzow, C.: A direct proof for M-stationarity under MPEC-GCQ for mathematical programs with equilibrium constraints. In: Dempe, S., Kalashnikov, V. (eds.) Optimization with Multivalued Mappings: Theory, Applications, and Algorithms, pp. 111–122. Springer, Boston (2006). https://doi.org/10.1007/0-387-34221-4_6

  14. Flegel, M.L., Kanzow, C., Outrata, J.V.: Optimality conditions for disjunctive programs with application to mathematical programs with equilibrium constraints. Set Valued Anal. 15(2), 139–162 (2007). https://doi.org/10.1007/s11228-006-0033-5

    Article  MathSciNet  MATH  Google Scholar 

  15. Gfrerer, H.: Optimality conditions for disjunctive programs based on generalized differentiation with application to mathematical programs with equilibrium constraints. SIAM J. Optim. 24(2), 898–931 (2014). https://doi.org/10.1137/130914449

    Article  MathSciNet  MATH  Google Scholar 

  16. Gfrerer, H., Outrata, J.V.: On computation of generalized derivatives of the normal-cone mapping and their applications. Math. Oper. Res. 41(4), 1535–1556 (2016). https://doi.org/10.1287/moor.2016.0789

    Article  MathSciNet  MATH  Google Scholar 

  17. Gfrerer, H., Ye, J.: New constraint qualifications for mathematical programs with equilibrium constraints via variational analysis. SIAM J. Optim. 27(2), 842–865 (2017). https://doi.org/10.1137/16M1088752

    Article  MathSciNet  MATH  Google Scholar 

  18. Gould, F., Tolle, J.: A necessary and sufficient qualification for constrained optimization. SIAM J. Appl. Math. 20(2), 164–172 (1971). https://doi.org/10.1137/0120021

    Article  MathSciNet  MATH  Google Scholar 

  19. Gugat, M.: Optimal switching boundary control of a string to rest in finite time. ZAMM J. Appl. Math. Mech. 88(4), 283–305 (2008). https://doi.org/10.1002/zamm.200700154

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, L., Lin, G.H.: Notes on some constraint qualifications for mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 156(3), 600–616 (2013). https://doi.org/10.1007/s10957-012-0084-8

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, L., Lin, G.H., Ye, J.J.: Second-order optimality conditions for mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 158(1), 33–64 (2013). https://doi.org/10.1007/s10957-012-0228-x

    Article  MathSciNet  MATH  Google Scholar 

  22. Hante, F.M., Sager, S.: Relaxation methods for mixed-integer optimal control of partial differential equations. Comput. Optim. Appl. 55(1), 197–225 (2013). https://doi.org/10.1007/s10589-012-9518-3

    Article  MathSciNet  MATH  Google Scholar 

  23. Hoheisel, T.: Mathematical Programs with Vanishing Constraints. Ph.D. thesis, University of Würzburg (2009)

  24. Hoheisel, T., Kanzow, C.: Stationary conditions for mathematical programs with vanishing constraints using weak constraint qualifications. J. Math. Anal. Appl. 337(1), 292–310 (2008). https://doi.org/10.1016/j.jmaa.2007.03.087

    Article  MathSciNet  MATH  Google Scholar 

  25. Hoheisel, T., Kanzow, C.: On the Abadie and Guignard constraint qualifications for Mathematical Programmes with Vanishing Constraints. Optimization 58(4), 431–448 (2009). https://doi.org/10.1080/02331930701763405

    Article  MathSciNet  MATH  Google Scholar 

  26. Hoheisel, T., Kanzow, C., Schwartz, A.: Convergence of a local regularization approach for mathematical programmes with complementarity or vanishing constraints. Optim. Methods Softw. 27(3), 483–512 (2012). https://doi.org/10.1080/10556788.2010.535170

    Article  MathSciNet  MATH  Google Scholar 

  27. Hoheisel, T., Kanzow, C., Schwartz, A.: Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints. Math. Program. 137(1), 257–288 (2013). https://doi.org/10.1007/s10107-011-0488-5

    Article  MathSciNet  MATH  Google Scholar 

  28. Liberzon, D.: Switching in Systems and Control. Birkhäuser, Boston (2003)

    Book  Google Scholar 

  29. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  30. Outrata, J.V., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer Academic, Dordrecht (1998)

    Book  Google Scholar 

  31. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, Grundlehren der mathematischen Wissenschaften, vol. 317. Springer, Berlin (1998)

    Google Scholar 

  32. Sager, S.: Reformulations and algorithms for the optimization of switching decisions in nonlinear optimal control. J. Process Control 19(8), 1238–1247 (2009). https://doi.org/10.1016/j.jprocont.2009.03.008

    Article  Google Scholar 

  33. Sarker, R.A., Newton, C.S.: Optimization Modelling. CRC Press, Boca Raton (2008)

    MATH  Google Scholar 

  34. Scheel, S., Scholtes, S.: Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25(1), 1–22 (2000). https://doi.org/10.1287/moor.25.1.1.15213

    Article  MathSciNet  MATH  Google Scholar 

  35. Scholtes, S., Stöhr, M.: How stringent is the linear independence assumption for mathematical programs with complementarity constraints? Math. Oper. Res. 26(4), 851–863 (2001). https://doi.org/10.1287/moor.26.4.851.10007

    Article  MathSciNet  MATH  Google Scholar 

  36. Seidman, T.I.: Optimal control of a diffusion/reaction/switching system. Evolut. Equ. Control Theory 2(4), 723–731 (2013). https://doi.org/10.3934/eect.2013.2.723

    Article  MathSciNet  MATH  Google Scholar 

  37. Tröltzsch, F.: Optimal Control of Partial Differential Equations. Vieweg, Wiesbaden (2009)

    MATH  Google Scholar 

  38. Wang, L., Yan, Q.: Time optimal controls of semilinear heat equation with switching control. J. Optim. Theory Appl. 165(1), 263–278 (2015). https://doi.org/10.1007/s10957-014-0606-7

    Article  MathSciNet  MATH  Google Scholar 

  39. Ye, J.J.: Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 307(1), 350–369 (2005). https://doi.org/10.1016/j.jmaa.2004.10.032

    Article  MathSciNet  MATH  Google Scholar 

  40. Zuazua, E.: Switching control. J. Eur. Math. Soc. 13(1), 85–117 (2011). https://doi.org/10.4171/JEMS/245

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author sincerely thanks Christian Kanzow and Matúš Benko for fruitful discussions and helpful suggestions about the actual presentation of the obtained results. Furthermore, the author gratefully acknowledges the remarks of two anonymous reviewers which helped to improve the paper’s overall quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Mehlitz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehlitz, P. Stationarity conditions and constraint qualifications for mathematical programs with switching constraints. Math. Program. 181, 149–186 (2020). https://doi.org/10.1007/s10107-019-01380-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-019-01380-5

Keywords

Mathematics Subject Classification

Navigation