Skip to main content
Log in

Statistical robustness in utility preference robust optimization models

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Utility preference robust optimization (PRO) concerns decision making problems where information on decision maker’s utility preference is incomplete and has to be elicited through partial information and the optimal decision is based on the worst case utility function elicited. A key assumption in the PRO models is that the true probability distribution is either known or can be recovered by real data generated by the true distribution. In data-driven optimization, this assumption may not be satisfied when perceived data differ from real data and consequently it raises a question as to whether statistical estimators of the PRO models based on perceived data are reliable. In this paper, we investigate the issue which is also known as qualitative robustness in the literature of statistics (Huber in Robust statistics, 3rd edn, Wiley, New York, 1981) and risk management (Krätschmer et al. in Finance Stoch 18:271–295, 2014). By utilizing the framework proposed by Krätschmer et al. (2014), we derive moderate sufficient conditions under which the optimal value and optimal solution of the PRO models are robust against perturbation of the exogenous uncertainty data, and examine how the tail behaviour of utility functions affects the robustness. Moreover, under some additional conditions on the Lipschitz continuity of the underlying functions with respect to random data, we establish quantitative robustness of the statistical estimators under the Kantorovich metric. Finally, we investigate uniform consistency of the optimal value and optimal solution of the PRO models. The results cover utility selection problems and stochastic optimization problems as special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Throughout this paper, we use terminology statistical robustness to avoid confusion with other notions of robustness.

  2. Here and later on (PRO) model refers specifically to the maximin problem defined in (2) and this should be distinguished from acronym PRO for general preference robust optimization models/problems.

References

  1. Anderson, E.J.: Business Risk Management: Models and Analysis. Wiley, Chichester (2014)

    Google Scholar 

  2. Armbruster, B., Delage, E.: Decision making under uncertainty when preference information is incomplete. Manag. Sci. 61, 111–128 (2015)

    Article  Google Scholar 

  3. Berge, C.: Topological Spaces: Including a Treatment of Multi-valued functions, vector spaces, and convexity. Courier Corporation, Chelmsford (1997)

    MATH  Google Scholar 

  4. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)

    Book  Google Scholar 

  5. Camerer, C.: Individual decision making. In: Kagel, J.H., Roth, A. (eds.) The Handbook of Experimental Economics, pp. 587–703. Princeton University Press, Princeton (1995)

    Google Scholar 

  6. Claus, M.: Advancing stability analysis of mean-risk stochastic programs: bilevel and two-stage models. Ph.D. Thesis, Universität Dusburg-Essen (2016)

  7. Claus, M., Krätschmer, V., Schultz, R.: Weak continuity of risk functionals with applications to stochastic programming. SIAM J. Optim. 27, 91–109 (2017)

    Article  MathSciNet  Google Scholar 

  8. Cont, R., Deguest, R., Scandolo, G.: Robustness and sensitivity analysis of risk measurement procedures. Quant Finance 10, 593–606 (2010)

    Article  MathSciNet  Google Scholar 

  9. Delage, E., Guo, S., Xu, H.: Shortfall risk models when information of loss function is incomplete. Working paper (2017)

  10. Delage, E., Kuhn, D., Wiesemann, W.: “Dice”-sion making under uncertainty: when can a random decision reduce risk? Manag. Sci. 65, 3282–3301 (2019)

    Article  Google Scholar 

  11. Delage, E., Li, J.Y.: Minimizing risk exposure when the choice of a risk measure is ambiguous. Manag. Sci. 64, 327–344 (2018)

    Article  Google Scholar 

  12. Embrechts, P., Schied, A., Wang, R.: Robustness in the optimization of risk measures (2018). arXiv:1809.09268

  13. Farquhar, P.H.: Utility assessment methods. Manag. Sci. 30, 1283–1300 (1984)

    Article  MathSciNet  Google Scholar 

  14. Fishburn, P., Kochenberger, G.: Two-piece von Neumann-Morgenstern utility functions. Decis. Sci. 10, 503–518 (1979)

    Article  Google Scholar 

  15. Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time, 3rd edn. de Gruyter, Berlin (2011)

    Book  Google Scholar 

  16. Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. J. Math. Econ. 18, 141–153 (1989)

    Article  Google Scholar 

  17. Gilboa, I., Marinacci, M.: Ambiguity and the Bayesian paradigm In: Arl\(\rm {\grave{o}}\)-CCosta, H., Hendricks, V.F., & van Benthem, J. (eds.) Readings in Formal Epistemology. Springer, Berlin (2016)

  18. Greco, S., Mousseau, V., Słowiński, R.: Ordinal regression revisited: multiple criteria ranking using a set of additive vaulr functions. Eur. J. Oper. Res. 191, 415–435 (2008)

    Article  Google Scholar 

  19. Guo, S., Xu, H.: Utility preference robust optimization: piecewise linear approximation, error bounds and stability. Manuscript (2018)

  20. Hampel, F.R.: A general statistical definition of robustness. Ann. Math. Stat. 42, 1887–1896 (1971)

    Article  Google Scholar 

  21. Haskell, W., Fu, L., Dessouk, M.: Ambiguity in risk preferences in robust stochastic optimization. Eur. J. Oper. Res. 254, 214–225 (2016)

    Article  MathSciNet  Google Scholar 

  22. Haskell, B., Huang, W., Xu, H.: Preference elicitation and robust optimization with quasi-concave choice functions in multi-attribute decision making (2018). arXiv:1805.06632

  23. Hu, J., Bansal, M., Mehrotra, S.: Robust decision making using a general utility set. Eur. J. Oper. Res. 269, 699–714 (2018)

    Article  MathSciNet  Google Scholar 

  24. Hu, J., Mehrotra, S.: Robust decision making over a set of random targets or risk-averse utilities with an application to portfolio optimization. IIE Trans. 47, 358–372 (2015)

    Article  Google Scholar 

  25. Hu, J., Stepanyan, G.: Optimization with reference-based robust preference constraints. SIAM J. Optim. 27, 2230–2257 (2017)

    Article  MathSciNet  Google Scholar 

  26. Huber, P.J.: Robust Statistics, 3rd edn. Wiley, New York (1981)

    Book  Google Scholar 

  27. Huber, P.J., Ronchetti, E.M.: Robust Statistics, 2nd edn. Wiley, Hoboken (2009)

    Book  Google Scholar 

  28. Kahneman, D., Tversky, A.: Prospect Theory: an analysis of decisions under risk. Econometrica 47, 263–291 (1979)

    Article  MathSciNet  Google Scholar 

  29. Karmarkar, U.S.: Subjectively weighted utility: a descriptive extension of the expected utility model. Organ. Behav. Hum. Perform. 21, 61–72 (1978)

    Article  Google Scholar 

  30. Krätschmer, V., Schied, A., Zähle, H.: Comparative and statistical robustness for law-invariant risk measures. Finance Stoch. 18, 271–295 (2014)

    Article  MathSciNet  Google Scholar 

  31. Krätschmer, V., Schied, A., Zähle, H.: Domains of weak continuity of statistical functionals with a view toward robust statistics. J. Multivar. Anal. 158, 1–19 (2017)

    Article  MathSciNet  Google Scholar 

  32. Krätschmer, V., Schied, A., Zähle, H.: Qualitative and infinitesimal robustness of tail-dependent statistical functionals. J. Multivar. Anal. 103, 35–47 (2012)

    Article  MathSciNet  Google Scholar 

  33. Liu, Y., Xu, H.: Stability analysis of stochastic programs with second order dominance constraints. Math. Program. 142, 435–460 (2013)

    Article  MathSciNet  Google Scholar 

  34. Maccheroni, F., Marinacci, M., Rustichini, A.: Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica 74, 1447–1498 (2006)

    Article  MathSciNet  Google Scholar 

  35. Marinacci, M.: Model uncertainty. J. Eur. Econ. Assoc. 13, 1022–1100 (2015)

    Article  Google Scholar 

  36. Prokhorov, Y.V.: Convergence of random processes and limit theorems in probability theory. Theory Probab. Appl. 1, 157–214 (1956)

    Article  MathSciNet  Google Scholar 

  37. Rabin, M.: Psychology and economies. J. Econ. Lit. 36, 11–46 (1998)

    Google Scholar 

  38. Ranga Rao, R.: Relations between weak and uniform convergence of measures with applications. Ann. Math. Stat. 33, 659–680 (1962)

    Article  MathSciNet  Google Scholar 

  39. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  Google Scholar 

  40. Römisch, W.: Stability of stochastic programming problems. In: Ruszczynski, A., Shapiro, A. (eds.) Stochastic Programming, Handbooks in Operations Research and Management Science, vol. 10, chapter 8. Elsevier, Amsterdam (2003)

  41. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory, 2nd edn. SIAM, Philadelphia (2014)

    Book  Google Scholar 

  42. Thurstone, L.L.: A law of comparative judgement. Psychol. Rev. 34, 278–286 (1927)

    Google Scholar 

  43. Train, K.: Discrete Choice Methods with Simulation. Cambridge University Press, New York (2009)

    MATH  Google Scholar 

  44. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1947)

    MATH  Google Scholar 

  45. Weber, M.: Decision making with incomplete information. Eur. J. Oper. Res. 28, 44–57 (1987)

    Article  Google Scholar 

  46. Zähle, H.: A definition of statistical robustness for general point estimators, and examples. J. Multivar. Anal. 143, 12–31 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Volker Krätschmer and Matthias Claus for valuable discussions on the subject of UGC property during preparation of the paper. They would also like to thank the two anonymous referees and the Associate Editor for valuable comments which help them significantly improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huifu Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S. Guo: The work of this author is supported by the NSFC Grant No. 11801057 and the Fundamental Research Funds for the Central Universities under Project No. DUT19LK09. H. Xu: The work of this author is supported by a CUHK startup funding and GRC Grant No. 14500620.

Appendix

Appendix

Theorem 5

(Berge’s maximum theorem, Page 116 [3]) Let \(\phi \) be a continuous numerical function in a topological space \(X \times Y\) and \(\varGamma \) be a continuous mapping of X into Y such that for each x, \(\varGamma (x) \ne \emptyset \), then the numerical function M defined by \(M(x):=\max \{\phi (x,y): y\in \varGamma (x)\}\) is continuous in X and the mapping \(\varPhi \) defined by \(\varPhi (x):=\{y| y\in \varGamma (x),\phi (y)=M(x)\}\) is a upper semicontinuous mapping of X into Y.

Proof of Theorem 2

Part (i). It follows from Theorem 1 (ii) that \({\vartheta }\) is continuous at P w.r.t. \(\phi \)-weak topology, that is, \(|{\vartheta }(P')-{\vartheta }(P)| \rightarrow 0\) as \(\mathsf {dl}_{\phi }(P',P) \rightarrow 0\). Together with the UGC property of \(({{\mathcal {M}}}_{k,\kappa }^{\phi ^p},\mathsf {dl}_{\phi })\) (see [32, Corallary 3.5]), we can obtain the conclusion by applying [32, Theorem 2.4]. Here we include a sketch of proof for completeness. By triangle inequality

$$\begin{aligned} \mathsf {dl}_{\text{ Prok }}\left( P^{\otimes N}\circ {\hat{{\vartheta }}}_N^{-1}, Q^{\otimes N}\circ {\hat{{\vartheta }}}_N^{-1}\right)\le & {} \mathsf {dl}_{\text{ Prok }}\left( P^{\otimes N}\circ {\hat{{\vartheta }}}_N^{-1}, \delta _{{\vartheta }(P)}\right) \nonumber \\&+\mathsf {dl}_{\text{ Prok }}\left( \delta _{{\vartheta }(P)}, Q^{\otimes N}\circ {\hat{{\vartheta }}}_N^{-1}\right) , \end{aligned}$$

it suffice to show that for any small number \(\epsilon >0\) there exist positive numbers \(\delta >0\) and \(N_0\in {\mathbb {N}}\) such that for all \(N\ge N_0\)

$$\begin{aligned} \mathsf {dl}_{\text{ Prok }}\left( P^{\otimes N}\circ {\hat{{\vartheta }}}_N^{-1}, \delta _{{\vartheta }(P)}\right)\le & {} \frac{\epsilon }{2},\\ \mathsf {dl}_{\text{ Prok }}\left( \delta _{{\vartheta }(P)}, Q^{\otimes N}\circ {\hat{{\vartheta }}}_N^{-1}\right)\le & {} \frac{\epsilon }{2} \end{aligned}$$

when \(\mathsf {dl}_{\phi }(P,Q) \le \delta \). By the Strassen’s theorem [27, Theorem 2.13], the above two inequalities are guaranteed respectively by

$$\begin{aligned} P^{\otimes N}\left[ \xi \in (\mathrm{I\!R}^k)^{\otimes N}: \left| {\vartheta }(P)-{\vartheta }(P_N) \right| \le \frac{\epsilon }{2} \right] \ge 1-\frac{\epsilon }{2}, \end{aligned}$$
(86)

and

$$\begin{aligned} Q^{\otimes N}\left[ {\tilde{\xi }}\in (\mathrm{I\!R}^k)^{\otimes N}: \left| {\vartheta }(P)-{\vartheta }(Q_N) \right| \le \frac{\epsilon }{2} \right] \ge 1-\frac{\epsilon }{2}, \end{aligned}$$
(87)

where \(P_N\) and \(Q_N\) are defined in (9). Since \({\vartheta }\) is continuous at P by Theorem 1, for any \(\epsilon >0\), there exists a constant \(\delta >0\) such that

$$\begin{aligned} \mathsf {dl}_{\phi }(P,P') \le 2\delta \Longrightarrow |{\vartheta }(P)-{\vartheta }(P')| \le \epsilon /2. \end{aligned}$$
(88)

By plugging \(P_N\) into the position of \(P'\), we obtain

$$\begin{aligned} P^{\otimes N}\left[ \xi \in (\mathrm{I\!R}^k)^{\otimes N}: \mathsf {dl}_{\phi } (P,P_N)\le 2\delta \right] \le P^{\otimes N}\left[ \xi \in (\mathrm{I\!R}^k)^{\otimes N}: \left| {\vartheta }(P)-{\vartheta }(P_N)\right| \le \frac{\epsilon }{2} \right] . \end{aligned}$$

Moreover, by the UGC property of \(({{\mathcal {M}}}_{k,\kappa }^{\phi ^p},\mathsf {dl}_{\phi })\), there exists \(N_0\in {\mathbb {N}}\) such that

$$\begin{aligned} P^{\otimes N}\left[ \xi \in (\mathrm{I\!R}^k)^{\otimes N}: \mathsf {dl}_{\phi } (P,P_N)\le \delta \right] \ge 1-\epsilon /2 \end{aligned}$$

for \(N \ge N_0\), a combination of the two inequalities gives rise to (86). Next, we prove (87). For any fixed Q satisfying \(\mathsf {dl}_{\phi }(P,Q) \le \delta \), we have \(\mathsf {dl}_{\phi }(P,Q_N) \le \mathsf {dl}_{\phi }(P,Q) + \mathsf {dl}_{\phi }(Q,Q_N)\), By the UGC property

$$\begin{aligned} 1-\frac{\epsilon }{2}\le & {} Q^{\otimes N}\left[ {\tilde{\xi }}\in (\mathrm{I\!R}^k)^{\otimes N}: \mathsf {dl}_{\phi } (Q,Q_N)\le \delta \right] \\\le & {} Q^{\otimes N}\left[ {\tilde{\xi }}\in (\mathrm{I\!R}^k)^{\otimes N}: \mathsf {dl}_{\phi } (P,Q_N)\le \mathsf {dl}_{\phi }(P,Q) + \delta \right] \\\le & {} Q^{\otimes N}\left[ {\tilde{\xi }}\in (\mathrm{I\!R}^k)^{\otimes N}: \mathsf {dl}_{\phi } (P,Q_N)\le 2\delta \right] \\\le & {} Q^{\otimes N}\left[ {\tilde{\xi }}\in (\mathrm{I\!R}^k)^{\otimes N}: \left| {\vartheta }(P)-{\vartheta }(Q_N)\right| \le \frac{\epsilon }{2}\right] , \end{aligned}$$

which implies (87).

Part (ii). If for each \(Q \in {\mathcal {M}}\), S(Q) and \(S(Q_N)\) are singletons, it follows from Theorem 1 (iii) that \(S(\cdot )\) is continuous at P w.r.t. \(\phi \)-weak topology. The rest holds based on similar analysis in Part (i).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Xu, H. Statistical robustness in utility preference robust optimization models. Math. Program. 190, 679–720 (2021). https://doi.org/10.1007/s10107-020-01555-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-020-01555-5

Keywords

Mathematics Subject Classification