Skip to main content
Log in

Continuous cubic formulations for cluster detection problems in networks

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

The celebrated Motzkin–Straus formulation for the maximum clique problem provides a nontrivial characterization of the clique number of a graph in terms of the maximum value of a nonconvex quadratic function over a standard simplex. It was originally developed as a way of proving Turán’s theorem in graph theory, but was later used to develop competitive algorithms for the maximum clique problem based on continuous optimization. Clique relaxations, such as s-defective clique and s-plex, emerged as attractive, more practical alternatives to cliques in network-based cluster detection models arising in numerous applications. This paper establishes continuous cubic formulations for the maximum s-defective clique problem and the maximum s-plex problem by generalizing the Motzkin–Straus formulation to the corresponding clique relaxations. The formulations are used to extend Turán’s theorem and other known lower bounds on the clique number to the considered clique relaxations. Results of preliminary numerical experiments with the CONOPT solver demonstrate that the proposed formulations can be used to quickly compute high-quality solutions for the maximum s-defective clique problem and the maximum s-plex problem. The proposed formulations can also be used to generate interesting test instances for global optimization solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmadi, A., Olshevsky, A., Parrilo, P., Tsitsiklis, J.: NP-hardness of deciding convexity of quartic polynomials and related problems. Math. Program. 137, 453–476 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aigner, M.: Turán’s graph theorem. Am. Math. Month. 102, 808–816 (1995)

    MATH  Google Scholar 

  3. Aigner, M., Ziegler, G.M.: Proofs from THE BOOK, 6th edn. Springer, Berlin (2018)

    Book  MATH  Google Scholar 

  4. ARKI Consulting & Development A/S CONOPT. http://www.conopt.com/. Accessed March 2020

  5. Balasundaram, B., Butenko, S.: Constructing test functions for global optimization using continuous formulations of graph problems. Optim. Methods Softw. 20(4–5), 439–452 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balasundaram, B., Butenko, S., Hicks, I.: Clique relaxations in social network analysis: the maximum \(k\)-plex problem. Oper. Res. 59, 133–142 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Balasundaram, B., Chandramouli, S.S., Trukhanov, S.: Approximation algorithms for finding and partitioning unit-disk graphs into co-\(k\)-plexes. Optim. Lett. 4(3), 311–320 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bomze, I.M.: Evolution towards the maximum clique. J. Global Optim. 10, 143–164 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bomze, I.M.: On standard quadratic optimization problems. J. Global Optim. 13(4), 369–387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bomze, I. M., Budinich, M., Pardalos, P. M., Pelillo, M.: The maximum clique problem. In: Du, D.-Z., Pardalos, P. M. (Eds.) Handbook of Combinatorial Optimization, pp. 1–74. Kluwer Academy Publishers (1999)

  11. Bomze, I.M., Dür, M., de Klerk, E., Roos, C., Quist, A.J., Terlaky, T.: On copositive programming and standard quadratic optimization problems. J. Global Optim. 18, 301–320 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bonami, P., Lodi, A., Schweiger, J., Tramontani, A.: Solving quadratic programming by cutting planes. SIAM J. Optim. 29, 1076–1105 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Busygin, S.: A new trust region technique for the maximum weight clique problem. Discret. Appl. Math. 154, 2080–2096 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. de Klerk, E., Pasechnik, D.V.: Approximation of the stability number of a graph via copositive programming. SIAM J. Optim. 12(4), 875–892 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Edmonds, J.: Maximum matching and a polyhedron with 0–1 vertices. J. Res. Natl. Bureau Stand. 69B, 125–130 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  16. Floudas, C.A., Pardalos, P.M., Adjiman, C., Esposito, W.R., Gümüs, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization, vol. 33. Springer, Berlin (2013)

    MATH  Google Scholar 

  17. Furini, F., Traversi, E., Belotti, P., Frangioni, A., Gleixner, A., Gould, N., Liberti, L., Lodi, A., Misener, R., Mittelmann, H., et al.: QPLIB: a library of quadratic programming instances. Math. Program. Comput. 11(2), 237–265 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gerards, A.M.H.: Matching. In: Ball, M.O. (ed.) Handbooks in OR and MS, ch 3, vol. 7, pp. 135–224. Elsevier, New York (1995)

    Google Scholar 

  19. Gibbons, L.E., Hearn, D.W., Pardalos, P.M.: A continuous based heuristic for the maximum clique problem. In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge. DIMACS Series on Discrete Mathematics and Theoretical Computer Science, pp. 103–124. American Mathematical Society, Providence (1996)

    Chapter  Google Scholar 

  20. Gibbons, L.E., Hearn, D.W., Pardalos, P.M., Ramana, M.V.: Continuous characterizations of the maximum clique problem. Math. Oper. Res. 22, 754–768 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grosso, A., Jamali, A., Locatelli, M., Schoen, F.: Solving the problem of packing equal and unequal circles in a circular container. J. Global Optim. 47(1), 63–81 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gschwind, T., Irnich, S., Podlinski, I.: Maximum weight relaxed cliques and Russian Doll Search revisited. Discret. Appl. Math. 234, 131–138 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gurobi Optimization. Gurobi optimizer 9.0. https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/9.0/refman.pdf (2020)

  24. Hungerford, J.T., Rinaldi, F.: A general regularized continuous formulation for the maximum clique problem. Math. Oper. Res. 44, 1161–1173 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Johnson, D.S., Trick, M.A. (eds.): Cliques, Coloring and Satisfiability: Second DIMACS Implementation Challenge. DIMACS Series on Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  26. Johnson, E.L.: Programming in networks and graphs. Technical Report ORC 65-1, Operations Research Center, University of California, Berkeley (1965)

  27. Liuzzi, G., Locatelli, M., Piccialli, V.: A new branch-and-bound algorithm for standard quadratic programming problems. Optim. Methods Softw. 34, 79–97 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Locatelli, M., Schoen, F.: Efficient algorithms for large scale global optimization: Lennard-Jones clusters. Comput. Optim. Appl. 26(2), 173–190 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. McClosky, B., Hicks, I.V.: Combinatorial algorithms for the maximum \(k\)-plex problem. J. Combin. Optim. 23, 29–49 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. McClosky, B., Hicks, I.V.: The co-2-plex polytope and integral systems. SIAM J. Discret. Math. 23, 1135–1148 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Miao, Z., Balasundaram, B.: Approaches for finding cohesive subgroups in large-scale social networks via maximum \(k\)-plex detection. Networks 69, 388–407 (2017)

    Article  MathSciNet  Google Scholar 

  32. Moser, H., Niedermeier, R., Sorge, M.: Exact combinatorial algorithms and experiments for finding maximum \(k\)-plexes. J. Combin. Optim. 24, 347–373 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Motzkin, T.S., Straus, E.G.: Maxima for graphs and a new proof of a theorem of Turán. Can. J. Math. 17, 533–540 (1965)

    Article  MATH  Google Scholar 

  34. Nogueira, B., Pinheiro, R.G.S.: A GPU based local search algorithm for the unweighted and weighted maximum \(s\)-plex problems. Ann. Oper. Res. 284(1), 367–400 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pardalos, P.M., Phillips, A.T.: A global optimization approach for solving the maximum clique problem. Int. J. Comput. Math. 33(3–4), 209–216 (1990)

    Article  MATH  Google Scholar 

  36. Pattillo, J., Youssef, N., Butenko, S.: On clique relaxation models in network analysis. Eur. J. Oper. Res. 226, 9–18 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pelillo, M., Jagota, A.: Feasible and infeasible maxima in a quadratic program for maximum clique. J. Artif. Neural Netw. 2, 411–420 (1995)

    Google Scholar 

  38. Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Global Optim. 8(2), 201–205 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Seidman, S.B., Foster, B.L.: A graph theoretic generalization of the clique concept. J. Math. Sociol. 6, 139–154 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  40. Seshadri, A.: Perron root computation, version 1.3.0.0. MathWorks File Exchange, https://www.mathworks.com/matlabcentral/fileexchange/22763, 2009. Accessed December 2019

  41. Sherali, H.D., Smith, J.C.: A polyhedral study of the generalized vertex packing problem. Math. Program. 107(3), 367–390 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Stozhkov, V., Pastukhov, G., Boginski, V., Pasiliao, E.L.: New analytical lower bounds on the clique number of a graph. Optim. Methods Softw. 32(2), 336–368 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Trukhanov, S., Balasubramaniam, C., Balasundaram, B., Butenko, S.: Algorithms for detecting optimal hereditary structures in graphs, with application to clique relaxations. Comput. Optim. Appl. 56, 113–130 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Turán, P.: On an extremal problem in graph theory. Matematikai és Fizikai Lapok 48, 436–452 (1941). (in Hungarian)

    MathSciNet  Google Scholar 

  45. Vavasis, S.A.: Nonlinear Optimization: Complexity Issues. Oxford University Press Inc, New York, NY (1991)

    MATH  Google Scholar 

  46. Wilf, H.S.: Spectral bounds for the clique and independence numbers of graphs. J. Combin. Theory Ser. B 40(1), 113–117 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yu, H., Paccanaro, A., Trifonov, V., Gerstein, M.: Predicting interactions in protein networks by completing defective cliques. Bioinformatics 22, 823–829 (2006)

    Article  Google Scholar 

  48. Zhou, Y., Hao, J.K.: Frequency-driven Tabu search for the maximum \(s\)-plex problem. Comput. Oper. Res. 86, 65–78 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grants Nos. 1538493 and 1662757. The support of AFOSR Grant FA9550-19-1-0161 and AFRL Award FA8651-16-2-0009 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austin Buchanan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 136 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stozhkov, V., Buchanan, A., Butenko, S. et al. Continuous cubic formulations for cluster detection problems in networks. Math. Program. 196, 279–307 (2022). https://doi.org/10.1007/s10107-020-01572-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-020-01572-4

Keywords

Mathematics Subject Classification

Navigation