Abstract
The solution of bilevel optimization problems with possibly nondifferentiable upper objective functions and with smooth and convex lower-level problems is discussed. A new approximate one-level reformulation for the original problem is introduced. An algorithm based on this reformulation is developed that is proven to converge to a solution of the bilevel problem. Each iteration of the algorithm depends on the solution of a nonsmooth optimization problem and its implementation leverages recent advances on nonsmooth optimization algorithms, which are fundamental to obtain a practical method. Experimental work is performed in order to demonstrate some characteristics of the algorithm in practice.







Similar content being viewed by others
References
Aliprantis, C.D., Border, K.C.: Correspondences. In: Infinite Dimensional Analysis: A Hitchhiker’s Guide, 2 edn., chap. 16, pp. 523–556. Springer, Berlin, Heidelberg (1999)
Allende, G.B., Still, G.: Solving bilevel programs with the KKT-approach. Math. Program. 138(1–2), 309–332 (2013)
Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications, vol. 30. Springer, US (1998)
Bard, J.F., Plummer, J., Sourie, J.C.: A bilevel programming approach to determining tax credits for biofuel production. Eur. J. Oper. Res. 120(1), 30–46 (2000)
Burke, J.V., Curtis, F.E., Lewis, A.S., Overton, M.L., Simões, L.E.A.: Gradient Sampling Methods for Nonsmooth Optimization, pp. 201–225. Springer International Publishing, Cham, Switzerland (2020)
Burke, J.V., Lewis, A.S., Overton, M.L.: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. Optim. 15(3), 751–779 (2005)
Cabot, A.: Proximal point algorithm controlled by a slowly vanishing term: applications to hierarchical minimization. SIAM J. Optim. 15(2), 555–572 (2005)
Clarke, F.H.: Optimization and nonsmooth analysis, vol. 5. SIAM, Montreal, Canada (1990)
Colson, B.: BIPA – BIlevel Programming with Approximation methods – software guide and test problems. Tech. rep., Les Cahiers du GERAD, G-2002-37, Montreal, Canada (2002)
Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153(1), 235–256 (2007)
Constantin, I., Florian, M.: Optimizing frequencies in a transit network: a nonlinear bi-level programming approach. Int. Trans. Oper. Res. 2(2), 149–164 (1995)
Côté, J.P., Marcotte, P., Savard, G.: A bilevel modelling approach to pricing and fare optimisation in the airline industry. J. Rev. Pricing. Manag. 2(1), 23–36 (2003)
Curtis, F.E., Mitchell, T., Overton, M.L.: A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles. Optim. Method. Softw. 32(1), 148–181 (2017)
Dempe, S.: Foundations of bilevel programming. Kluwer Academic Publishers, Dordrecht (2002)
Dempe, S., Dutta, J.: Is bilevel programming a special case of a mathematical program with complementarity constraints? Math. Program. 131(1–2), 37–48 (2012)
Dempe, S., Franke, S.: On the solution of convex bilevel optimization problems. Comput. Optim. Appl. 63(3), 685–703 (2016)
Dempe, S., Zemkoho, A.: Bilevel Optimization: Advances and Next Challenges. Springer International Publishing, Cham, Switzerland (2020)
Dempe, S., Zemkoho, A.B.: The bilevel programming problem: reformulations, constraint qualifications and optimality conditions. Math. Program. 138(1–2), 447–473 (2013)
Dutta, J., Dempe, S.: Bilevel programming with convex lower level problems. In: Dempe, S., Kalashnikov, V. (eds.) Optimization with Multivalued Mappings: Theory, Applications, and Algorithms, pp. 51–71. Springer, US, Boston, MA (2006)
Fliege, J., Tin, A., Zemkoho, A.: Gauss-Newton-type methods for bilevel optimization. Comput. Optim. Appl. 78(3), 793–824 (2021)
Gibbons, R.: A primer in game theory. Harvester Wheatsheaf, New York (1992)
Guo, L., Lin, G.H., Jane, J.Y.: Solving mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 166(1), 234–256 (2015)
Harder, F., Mehlitz, P., Wachsmuth, G.: Reformulation of the M-stationarity conditions as a system of discontinuous equations and its solution by a semismooth Newton method. SIAM J. Optim. 31(2), 1459–1488 (2021)
Helou, E.S., Santos, S.A., Simões, L.E.A.: On the local convergence analysis of the gradient sampling method for finite max-functions. J. Optim. Theory Appl. 175(1), 137–157 (2017)
Helou, E.S., Santos, S.A., Simões, L.E.A.: A fast gradient and function sampling method for finite-max functions. Comput. Optim. Appl. 71(3), 673–717 (2018)
Helou, E.S., Santos, S.A., Simões, L.E.A.: A new sequential optimality condition for constrained nonsmooth optimization. SIAM J. Optim. 30(2), 1610–1637 (2020)
Helou, E.S., Simões, L.E.A.: \(\epsilon \)-subgradient algorithms for bilevel convex optimization. Inverse Prob. 33(5), 055020 (2017)
Helou Neto, E.S., De Pierro, A.R.: On perturbed steepest descent methods with inexact line search for bilevel convex optimization. Optimization 60(8–9), 991–1008 (2011)
Ishizuka, Y., Aiyoshi, E.: Double penalty method for bilevel optimization problems. Ann. Oper. Res. 34(1), 73–88 (1992)
Kunisch, K., Pock, T.: A bilevel optimization approach for parameter learning in variational models. SIAM J. Imag. Sci. 6(2), 938–983 (2013)
Labbé, M., Marcotte, P., Savard, G.: A bilevel model of taxation and its application to optimal highway pricing. Manage. Sci. 44(12), 1608–1622 (1998)
Lampariello, L., Sagratella, S.: A bridge between bilevel programs and Nash games. J. Optim. Theory Appl. 174(2), 613–635 (2017)
Lampariello, L., Sagratella, S.: Numerically tractable optimistic bilevel problems. Comput. Optim. Appl. 76, 277–303 (2020)
Lewis, A.S., Overton, M.L.: Nonsmooth optimization via quasi-Newton methods. Math. Program. 141(1–2), 135–163 (2013)
Ochs, P., Ranftl, R., Brox, T., Pock, T.: Bilevel optimization with nonsmooth lower level problems. In: International Conference on Scale Space and Variational Methods in Computer Vision, pp. 654–665. Springer (2015)
Outrata, J.V.: A note on the usage of nondifferentiable exact penalties in some special optimization problems. Kybernetika 24(4), 251–258 (1988)
Sabach, S., Shtern, S.: A first order method for solving convex bilevel optimization problems. SIAM J. Optim. 27(2), 640–660 (2017)
Savard, G., Gauvin, J.: The steepest descent direction for the nonlinear bilevel programming problem. Oper. Res. Lett. 15(5), 265–272 (1994)
Shehu, Y., Vuong, P.T., Zemkoho, A.: An inertial extrapolation method for convex simple bilevel optimization. Optim. Method. Softw. 36(1), 1–19 (2021)
Solodov, M.V.: A bundle method for a class of bilevel nonsmooth convex minimization problems. SIAM J. Optim. 18(1), 242–259 (2007)
Vicente, L., Savard, G., Júdice, J.: Descent approaches for quadratic bilevel programming. J. Optim. Theory Appl. 81(2), 379–399 (1994)
Wu, J., Zhang, L., Zhang, Y.: An inexact Newton method for stationary points of mathematical programs constrained by parameterized quasi-variational inequalities. Num. Algor. 69(4), 713–735 (2015)
Ye, J.J., Zhu, D.: New necessary optimality conditions for bilevel programs by combining the MPEC and value function approaches. SIAM J. Optim. 20(4), 1885–1905 (2010)
Ye, J.J., Zhu, D.L.: Optimality conditions for bilevel programming problems. Optimization 33(1), 9–27 (1995)
Zemkoho, A.B., Zhou, S.: Theoretical and numerical comparison of the Karush-Kuhn-Tucker and value function reformulations in bilevel optimization. Comput. Optim. Appl. 78(2), 625–674 (2021)
Zhou, S., Zemkoho, A.B., Tin, A.: Bolib: Bilevel Optimization LIBrary of test problems. In: Dempe, S., Zemkoho, A. (eds.) Bilevel Optimization: Advances and Next Challenges, pp. 563–580. Springer International Publishing, Cham (2020)
Acknowledgements
This work was partially funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grants 310893/2019-4 and 305010/2020-4 and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) grants 2018/24293-0, 2016/22989-2 and 2013/07375-0. The authors are thankful to the anonymous referees, who provided insightful comments that improved the presentation of this work.
Author information
Authors and Affiliations
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Helou, E.S., Santos, S.A. & Simões, L.E.A. A primal nonsmooth reformulation for bilevel optimization problems. Math. Program. 198, 1381–1409 (2023). https://doi.org/10.1007/s10107-021-01764-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-021-01764-6