Skip to main content

Advertisement

Log in

On the implementation and strengthening of intersection cuts for QCQPs

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

The generation of strong linear inequalities for QCQPs has been recently tackled by a number of authors using the intersection cut paradigm—a highly studied tool in integer programming whose flexibility has triggered these renewed efforts in non-linear settings. In this work, we consider intersection cuts using the recently proposed construction of maximal quadratic-free sets. Using these sets, we derive closed-form formulas to compute intersection cuts which allow for quick cut-computations by simply plugging-in parameters associated to an arbitrary quadratic inequality being violated by a vertex of an LP relaxation. Additionally, we implement a cut-strengthening procedure that dates back to Glover and evaluate these techniques with extensive computational experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Typically, one uses a solution \({\bar{s}}\) optimal for the relaxation; in this case if \({\bar{s}}\in S\) the problem would be solved.

  2. This citation deals with S being the lattice, but the argument extends trivially to any closed S.

  3. Since we are considering rays of a simplicial cone of dimension p, they are all linearly independent. However, in practice, the set \(S\) is usually of dimension \(\ll p\). In these cases, one can either extend the \(S\)-free set to dimension p, or restrict the rays to the support of \(S\) for computational purposes. The latter might create linear dependence.

References

  1. Achterberg, T.: Constraint integer programming. Doctoral thesis, Technische Universität Berlin, Fakultät II—Mathematik und Naturwissenschaften, Berlin (2007). https://doi.org/10.14279/depositonce-1634

  2. Andersen, K., Jensen, A.N.: Intersection cuts for mixed integer conic quadratic sets. In: Goemans, M., Correa, J. (eds.) Integer Programming and Combinatorial Optimization, pp. 37–48. Springer, New York (2013)

    Chapter  MATH  Google Scholar 

  3. Andersen, K., Louveaux, Q., Weismantel, R.: An analysis of mixed integer linear sets based on lattice point free convex sets. Math. Oper. Res. 35(1), 233–256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.A.: Inequalities from two rows of a simplex tableau. In: Integer Programming and Combinatorial Optimization, pp. 1–15. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-72792-7_1

  5. Balas, E.: Intersection cuts—a new type of cutting planes for integer programming. Oper. Res. 19(1), 19–39 (1971). https://doi.org/10.1287/opre.19.1.19

    Article  MathSciNet  MATH  Google Scholar 

  6. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Maximal lattice-free convex sets in linear subspaces. Math. Oper. Res. 35(3), 704–720 (2010). https://doi.org/10.1287/moor.1100.0461

    Article  MathSciNet  MATH  Google Scholar 

  7. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Minimal inequalities for an infinite relaxation of integer programs. SIAM J. Discrete Math. 24(1), 158–168 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bestuzheva, K., Besançon, M., Chen, W.K., Chmiela, A., Donkiewicz, T., van Doornmalen, J., Eifler, L., Gaul, O., Gamrath, G., Gleixner, A., Gottwald, L., Graczyk, C., Halbig, K., Hoen, A., Hojny, C., van der Hulst, R., Koch, T., Lübbecke, M., Maher, S.J., Matter, F., Mühmer, E., Müller, B., Pfetsch, M.E., Rehfeldt, D., Schlein, S., Schlösser, F., Serrano, F., Shinano, Y., Sofranac, B., Turner, M., Vigerske, S., Wegscheider, F., Wellner, P., Weninger, D., Witzig, J.: The SCIP Optimization Suite 8.0. ZIB-Report 21-41, Zuse Institute Berlin (2021). http://nbn-resolving.de/urn:nbn:de:0297-zib-85309

  9. Bienstock, D., Chen, C., Muñoz, G.: Intersection cuts for polynomial optimization. In: Integer Programming and Combinatorial Optimization, pp. 72–87. Springer (2019). https://doi.org/10.1007/978-3-030-17953-3_6

  10. Bienstock, D., Chen, C., Munoz, G.: Outer-product-free sets for polynomial optimization and oracle-based cuts. Math. Program. 183, 105–148 (2020)

  11. Bonami, P., Linderoth, J., Lodi, A.: Disjunctive cuts for mixed integer nonlinear programming problems. In: Majoub, R. (ed.) Progress in Combinatorial Optimization, pp. 521–544. Wiley/ISTE, New York (2011)

  12. Borozan, V., Cornuéjols, G.: Minimal valid inequalities for integer constraints. Math. Oper. Res. 34(3), 538–546 (2009). https://doi.org/10.1287/moor.1080.0370

    Article  MathSciNet  MATH  Google Scholar 

  13. Burer, S., Kılınç-Karzan, F.: How to convexify the intersection of a second order cone and a nonconvex quadratic. Math. Program. 162(1–2), 393–429 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chmiela, A., Muñoz, G., Serrano, F.: On the implementation and strengthening of intersection cuts for QCQPs. In: International Conference on Integer Programming and Combinatorial Optimization. Springer, Cham (2021)

  15. Conforti, M., Cornuéjols, G., Daniilidis, A., Lemaréchal, C., Malick, J.: Cut-generating functions and S-free sets. Math. Oper. Res. 40(2), 276–391 (2015). https://doi.org/10.1287/moor.2014.0670

    Article  MathSciNet  MATH  Google Scholar 

  16. Conforti, M., Cornuéjols, G., Zambelli, G.: Corner polyhedron and intersection cuts. Surv. Oper. Res. Manag. Sci. 16(2), 105–120 (2011). https://doi.org/10.1016/j.sorms.2011.03.001

    Article  MATH  Google Scholar 

  17. Conforti, M., Cornuejols, G., Zambelli, G.: Integer Programming. Springer, New York (2014)

    Book  MATH  Google Scholar 

  18. Cornuéjols, G., Wolsey, L., Yıldız, S.: Sufficiency of cut-generating functions. Math. Program. 152(1–2), 643–651 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dey, S.S., Wolsey, L.A.: Lifting integer variables in minimal inequalities corresponding to lattice-free triangles. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) Integer Programming and Combinatorial Optimization, pp. 463–475. Springer, New York (2008)

    Chapter  MATH  Google Scholar 

  20. Dey, S.S., Wolsey, L.A.: Constrained infinite group relaxations of MIPs. SIAM J. Optim. 20(6), 2890–2912 (2010). https://doi.org/10.1137/090754388

    Article  MathSciNet  MATH  Google Scholar 

  21. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: Intersection cuts for bilevel optimization. In: Integer Programming and Combinatorial Optimization, pp. 77–88. Springer (2016). https://doi.org/10.1007/978-3-319-33461-5_7

  22. Fischetti, M., Monaci, M.: A branch-and-cut algorithm for mixed-integer bilinear programming. Eur. J. Oper. Res. (2019). https://doi.org/10.1016/j.ejor.2019.09.043

    Article  MATH  Google Scholar 

  23. Freund, R.M., Orlin, J.B.: On the complexity of four polyhedral set containment problems. Math. Program. 33(2), 139–145 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Glover, F.: Convexity cuts and cut search. Oper. Res. 21(1), 123–134 (1973). https://doi.org/10.1287/opre.21.1.123

    Article  MathSciNet  MATH  Google Scholar 

  25. Glover, F.: Polyhedral convexity cuts and negative edge extensions. Z. Oper. Res. 18(5), 181–186 (1974)

    MathSciNet  MATH  Google Scholar 

  26. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra. Math. Program. 3–3(1), 23–85 (1972). https://doi.org/10.1007/bf01584976

    Article  MathSciNet  MATH  Google Scholar 

  27. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, New York (2013)

    MATH  Google Scholar 

  28. Kılınç-Karzan, F.: On minimal valid inequalities for mixed integer conic programs. Math. Oper. Res. 41(2), 477–510 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I—convex underestimating problems. Math. Program. 10(1), 147–175 (1976). https://doi.org/10.1007/bf01580665

    Article  MATH  Google Scholar 

  30. MINLP library. http://www.minlplib.org/

  31. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Split cuts and extended formulations for mixed integer conic quadratic programming. Oper. Res. Lett. 43(1), 10–15 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Intersection cuts for nonlinear integer programming: convexification techniques for structured sets. Math. Program. 155(1–2), 575–611 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Muñoz, G., Serrano, F.: Maximal quadratic-free sets. Math. Program. 192, 229–270 (2022)

  34. Santana, A., Dey, S.S.: The convex hull of a quadratic constraint over a polytope. arXiv preprint arXiv:1812.10160 (2018)

  35. Sen, S., Sherali, H.D.: Facet inequalities from simple disjunctions in cutting plane theory. Math. Program. 34(1), 72–83 (1986). https://doi.org/10.1007/bf01582164

    Article  MathSciNet  MATH  Google Scholar 

  36. Sen, S., Sherali, H.D.: Nondifferentiable reverse convex programs and facetial convexity cuts via a disjunctive characterization. Math. Program. 37(2), 169–183 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Serrano, F.: Intersection cuts for factorable MINLP. In: Integer Programming and Combinatorial Optimization, pp. 385–398. Springer (2019). https://doi.org/10.1007/978-3-030-17953-3_29

  38. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, vol. 65. Springer, New York (2013)

    MATH  Google Scholar 

  39. Towle, E., Luedtke, J.: Intersection disjunctions for reverse convex sets. arXiv preprint arXiv:1901.02112 (2019)

  40. Tuy, H.: Concave programming with linear constraints. In: Doklady Akademii Nauk, vol. 159, pp. 32–35. Russian Academy of Sciences (1964)

  41. Vigerske, S., Gleixner, A.: SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework. Optim. Methods Softw. 33(3), 563–593 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the two anonymous reviewers for their valuable feedback. The described research activities are funded by the German Federal Ministry for Economic Affairs and Energy within the project EnBA-M (ID: 03ET1549D). The work for this article has been (partly) conducted within the Research Campus MODAL funded by the German Federal Ministry of Education and Research (BMBF grant numbers 05M14ZAM, 05M20ZBM). Financial support was also provided by the Government of Chile through the FONDECYT grant number 11190515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Muñoz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Explicit coefficient computations

Explicit coefficient computations

In this section we present the computations of the coefficients in the quadratic equations presented in Sect. 4.1. These coefficients are presented in Tables 1, 2.

1.1 Case 1: \({\bar{b}}_{I_0} = 0\) and \(\kappa = 0\)

In this case, we would like to find the coefficients of (4.1), which reads

$$\begin{aligned} \sqrt{A_r t^2 + B_r t + C_r} - (D_r t + E_r) = 0, \end{aligned}$$

when we are using it to represent equation (4.2), which reads

$$\begin{aligned} \Vert y({\bar{s}}+ t r)\Vert -\frac{x({\bar{s}})^{\mathsf {T}}}{\Vert x({\bar{s}})\Vert } x({\bar{s}}+ t r) = 0. \end{aligned}$$

Recall that,

$$\begin{aligned} x(s)&= \left( \sqrt{\theta _i} v_i^{\mathsf {T}}\left( s+ \frac{b}{2\theta _i}\right) \right) _{i \in I_+} \\ y(s)&= \left( \sqrt{-\theta _i} v_i^{\mathsf {T}}\left( s+ \frac{b}{2\theta _i}\right) \right) _{i \in I_-}. \end{aligned}$$

Thus,

$$\begin{aligned} x({\bar{s}}+ tr)&= x({\bar{s}}) + t \left( \sqrt{\theta _i} v_i^{\mathsf {T}}r\right) _{i \in I_+} \\ y({\bar{s}}+ tr)&= y({\bar{s}}) + t \left( \sqrt{-\theta _i} v_i^{\mathsf {T}}r\right) _{i \in I_-} \end{aligned}$$

With this, we process the first component of (4.2):

$$\begin{aligned} \Vert y({\bar{s}}+ t r)\Vert ^2&= \left\| y({\bar{s}}) + t \left( \sqrt{-\theta _i} v_i^{\mathsf {T}}r\right) _{i \in I_-}\right\| ^2 \\&= \Vert y({\bar{s}})\Vert ^2 + 2 t y({\bar{s}})^{\mathsf {T}}\left( \sqrt{-\theta _i} v_i^{\mathsf {T}}r\right) _{i \in I_-} + t^2 \left\| \left( \sqrt{-\theta _i} v_i^{\mathsf {T}}r\right) _{i \in I_-}\right\| ^2. \end{aligned}$$

On the other hand,

$$\begin{aligned} x({\bar{s}})^{\mathsf {T}}x({\bar{s}}+ t r)&= x({\bar{s}})^{\mathsf {T}}\left( x({\bar{s}}) + t \left( \sqrt{\theta _i} v_i^{\mathsf {T}}r\right) _{i \in I_+} \right) \\&= t x({\bar{s}})^{\mathsf {T}}\left( \sqrt{\theta _i} v_i^{\mathsf {T}}r\right) _{i \in I_+} + \Vert x({\bar{s}})\Vert ^2, \end{aligned}$$

from where we obtain

$$\begin{aligned} \frac{x({\bar{s}})^{\mathsf {T}}}{\Vert x({\bar{s}})\Vert } x({\bar{s}}+ t r) = t \frac{x({\bar{s}})^{\mathsf {T}}}{\Vert x({\bar{s}})\Vert } \left( \sqrt{\theta _i} v_i^{\mathsf {T}}r\right) _{i \in I_+} + \Vert x({\bar{s}})\Vert . \end{aligned}$$

Altogether, we see that

$$\begin{aligned} A_r&= \left\| \left( \sqrt{-\theta _i} v_i^{\mathsf {T}}r\right) _{i \in I_-}\right\| ^2&= -\sum _{i \in I_-} \theta _i (v_i^{\mathsf {T}}r)^2, \\ B_r&= 2 y({\bar{s}})^{\mathsf {T}}\left( \sqrt{-\theta _i} v_i^{\mathsf {T}}r\right) _{i \in I_-}&= - 2\sum _{i \in I_-} \theta _i \left( v_i^{\mathsf {T}}({\bar{s}}+ \frac{b}{2\theta _i})\right) (v_i^{\mathsf {T}}r), \\ C_r&= \Vert y({\bar{s}})\Vert ^2&= - \sum _{i \in I_-} \theta _i \left( v_i^{\mathsf {T}}({\bar{s}}+ \frac{b}{2\theta _i})\right) ^2, \\ D_r&= \frac{x({\bar{s}})^{\mathsf {T}}}{\Vert x({\bar{s}})\Vert } \left( \sqrt{\theta _i} v_i^{\mathsf {T}}r\right) _{i \in I_+}&= \frac{1}{E} \sum _{i \in I_+} \theta _i \left( v_i^{\mathsf {T}}({\bar{s}}+ \frac{b}{2\theta _i})\right) (v_i^{\mathsf {T}}r), \\ E_r&= \Vert x({\bar{s}})\Vert&= \sqrt{ \sum \nolimits _{i \in I_+} \theta _i \left( v_i^{\mathsf {T}}({\bar{s}}+ \frac{b}{2\theta _i})\right) ^2}. \end{aligned}$$

1.2 Case 2: \({\bar{b}}_{I_0} = 0\) and \(\kappa > 0\)

As in the previous case, we would like to find the coefficients of (4.1), which reads

$$\begin{aligned} \sqrt{A_r t^2 + B_r t + C_r} - (D_r t + E_r) = 0, \end{aligned}$$

when we are using it to represent equation (4.3), which reads

$$\begin{aligned} \Vert y({\bar{s}}+ t r)\Vert - \frac{(x({\bar{s}}), \sqrt{\kappa })}{\Vert (x({\bar{s}}), \sqrt{\kappa })\Vert }^{\mathsf {T}}(x({\bar{s}}+ t r), \sqrt{\kappa }) = 0. \end{aligned}$$

It is not hard to see that the \(A_r, B_r,\) and \(C_r\) coefficients are the same as in the previous section. For the rest, we compute

$$\begin{aligned} (x({\bar{s}}), \sqrt{\kappa })^{\mathsf {T}}(x({\bar{s}}+ t r), \sqrt{\kappa })&= x({\bar{s}})^{\mathsf {T}}x({\bar{s}}+ t r) + \kappa \\&= t x({\bar{s}})^{\mathsf {T}}\left( \sqrt{\theta _i} v_i^{\mathsf {T}}r\right) _{i \in I_+} + \Vert x({\bar{s}})\Vert ^2 + \kappa \end{aligned}$$

thus,

$$\begin{aligned} \frac{(x({\bar{s}}), \sqrt{\kappa })}{\Vert (x({\bar{s}}), \sqrt{\kappa })\Vert }^{\mathsf {T}}(x({\bar{s}}+ t r), \sqrt{\kappa }) = t \frac{x({\bar{s}})^{\mathsf {T}}\left( \sqrt{\theta _i} v_i^{\mathsf {T}}r\right) _{i \in I_+}}{\Vert (x({\bar{s}}), \sqrt{\kappa })\Vert } + \Vert (x({\bar{s}}), \sqrt{\kappa })\Vert . \end{aligned}$$

Collecting all terms we obtain that in this case

$$\begin{aligned} A_r&= -\sum _{i \in I_-} \theta _i (v_i^{\mathsf {T}}r)^2, \\ B_r&= - 2\sum _{i \in I_-} \theta _i \left( v_i^{\mathsf {T}}({\bar{s}}+ \frac{b}{2\theta _i})\right) (v_i^{\mathsf {T}}r), \\ C_r&= - \sum _{i \in I_-} \theta _i \left( v_i^{\mathsf {T}}({\bar{s}}+ \frac{b}{2\theta _i})\right) ^2, \\ D_r&= \frac{1}{E} \sum _{i \in I_+} \theta _i \left( v_i^{\mathsf {T}}({\bar{s}}+ \frac{b}{2\theta _i})\right) (v_i^{\mathsf {T}}r), \\ E_r&= \Vert (x({\bar{s}}), \sqrt{\kappa })\Vert = \sqrt{ \kappa + \sum _{i \in I_+} \theta _i \left( v_i^{\mathsf {T}}({\bar{s}}+ \frac{b}{2\theta _i})\right) ^2}. \end{aligned}$$

1.3 Case 3: \({\bar{b}}_{I_0} = 0\) and \(\kappa < 0\)

We would like to find the coefficients of (4.1), which reads

$$\begin{aligned} \sqrt{A_r t^2 + B_r t + C_r} - (D_r t + E_r) = 0, \end{aligned}$$

when we are using it to represent equation (4.4), which reads

$$\begin{aligned} \Vert (y({\bar{s}}+ t r), \sqrt{-\kappa })\Vert - \frac{x({\bar{s}})^{\mathsf {T}}}{\Vert x({\bar{s}})\Vert } x({\bar{s}}+ t r) = 0. \end{aligned}$$

This case is almost identical as the previous case. Indeed, only the expressions defining the C and E coefficients change. As

$$\begin{aligned} \Vert (y({\bar{s}}+ t r), \sqrt{-\kappa })\Vert ^2 = \Vert y({\bar{s}}+ t r)\Vert ^2 -\kappa , \end{aligned}$$

we have that

$$\begin{aligned} A_r&= -\sum _{i \in I_-} \theta _i (v_i^{\mathsf {T}}r)^2, \\ B_r&= - 2\sum _{i \in I_-} \theta _i \left( v_i^{\mathsf {T}}({\bar{s}}+ \frac{b}{2\theta _i})\right) (v_i^{\mathsf {T}}r), \\ C_r&= -\kappa - \sum _{i \in I_-} \theta _i \left( v_i^{\mathsf {T}}({\bar{s}}+ \frac{b}{2\theta _i})\right) ^2, \\ D_r&= \frac{1}{E} \sum _{i \in I_+} \theta _i \left( v_i^{\mathsf {T}}({\bar{s}}+ \frac{b}{2\theta _i})\right) (v_i^{\mathsf {T}}r), \\ E_r&= \sqrt{ \sum _{i \in I_+} \theta _i \left( v_i^{\mathsf {T}}({\bar{s}}+ \frac{b}{2\theta _i})\right) ^2}. \end{aligned}$$

1.4 Case 4: \({\bar{b}}_{I_0} \ne 0\)

1.4.1 Root defined by (4.8)

As before, we would like to compute the coefficients of

$$\begin{aligned} \sqrt{A_r t^2 + B_r t + C_r} - (D_r t + E_r) = 0, \end{aligned}$$

when we are using it to represent equation (4.8), which reads

$$\begin{aligned} \Vert {{\hat{y}}}({\bar{s}}+ tr)\Vert - \lambda ^{\mathsf {T}}{{\hat{x}}}({\bar{s}}+ tr) = 0. \end{aligned}$$

In this case we have

$$\begin{aligned} {{\hat{x}}}_{p_{+}+ 1}(s) = \frac{1}{2\sqrt{1+\kappa ^2}} \left( w(s) + \kappa + \sqrt{1+\kappa ^2}\right) , \\ {{\hat{y}}}_{p_{-}+ 1}(s) = \frac{1}{2\sqrt{1+\kappa ^2}} \left( w(s) + \kappa - \sqrt{1+\kappa ^2}\right) . \end{aligned}$$

Thus,

$$\begin{aligned} {{\hat{x}}}_{p_{+}+ 1}({\bar{s}}+ tr)&= t \left( \frac{w(r)}{2\sqrt{1+\kappa ^2}} \right) + {{\hat{x}}}_{p_{+}+ 1}({\bar{s}}), \\ {{\hat{y}}}_{p_{-}+ 1}({\bar{s}}+ tr)&= t \left( \frac{w(r)}{2\sqrt{1+\kappa ^2}} \right) + {{\hat{y}}}_{p_{-}+ 1}({\bar{s}}). \end{aligned}$$

Then,

$$\begin{aligned}&\Vert ({{\hat{y}}}({\bar{s}}+ t r)\Vert ^2 \\&\quad = \frac{1}{\sqrt{1+\kappa ^2}} \Vert y({\bar{s}}+ t r)\Vert ^2 + \left( t \left( \frac{w(r)}{2\sqrt{1+\kappa ^2}} \right) + {{\hat{y}}}_{p_{-}+1}({\bar{s}})\right) ^2 \\&\quad = \frac{1}{\sqrt{1+\kappa ^2}} \Vert y({\bar{s}}+ t r)\Vert ^2 + t^2 \left( \frac{w(r)^2}{4(1+\kappa ^2)} \right) + 2t \left( \frac{w(r)}{2\sqrt{1+\kappa ^2}} \right) {{\hat{y}}}_{p_{-}+1}({\bar{s}}) + {{\hat{y}}}_{p_{-}+1}({\bar{s}})^2\\ \end{aligned}$$

From here we obtain

$$\begin{aligned} A_r&= \frac{w(r)^2}{4(1+\kappa ^2)} - \frac{1}{\sqrt{1+\kappa ^2}} \sum _{i \in I_-} \theta _i (v_i^{\mathsf {T}}r)^2, \\ B_r&= 2 \left( \frac{w(r)}{2\sqrt{1+\kappa ^2}} \right) {{\hat{y}}}_{p_{-}+1}({\bar{s}}) - \frac{2}{\sqrt{1+\kappa ^2}} \sum _{i \in I_-} \theta _i \left( v_i^{\mathsf {T}}({\bar{s}}+ \frac{b}{2\theta _i})\right) (v_i^{\mathsf {T}}r), \\ C_r&= {{\hat{y}}}_{p_{-}+1}({\bar{s}})^2 - \frac{1}{\sqrt{1+\kappa ^2}} \sum _{i \in I_-} \theta _i \left( v_i^{\mathsf {T}}({\bar{s}}+ \frac{b}{2\theta _i})\right) ^2. \end{aligned}$$

For the other coefficients we compute:

$$\begin{aligned} {{\hat{x}}}({\bar{s}})^{\mathsf {T}}{{\hat{x}}}({\bar{s}}+ t r) =&\frac{1}{\sqrt{1+\kappa ^2}} x({\bar{s}})^{\mathsf {T}}x({\bar{s}}+ tr) + {{\hat{x}}}_{p_{+}+1}({\bar{s}}) {{\hat{x}}}_{p_{+}+1}({\bar{s}}+ tr) \\ =&\frac{1}{\sqrt{1+\kappa ^2}} x({\bar{s}})^{\mathsf {T}}x({\bar{s}}+ tr) + {{\hat{x}}}_{p_{+}+1}({\bar{s}}) \left( t \left( \frac{w(r)}{2\sqrt{1+\kappa ^2}} \right) + {{\hat{x}}}_{p_{+}+ 1}({\bar{s}})\right) \\ =&\frac{1}{\sqrt{1+\kappa ^2}} \left( t x({\bar{s}})^{\mathsf {T}}\left( \sqrt{\theta _i} v_i^{\mathsf {T}}r\right) _{i \in I_+} + \Vert x({\bar{s}})\Vert ^2 \right) \\&+ {{\hat{x}}}_{p_{+}+1}({\bar{s}}) \left( t \left( \frac{w(r)}{2\sqrt{1+\kappa ^2}} \right) + {{\hat{x}}}_{p_{+}+ 1}({\bar{s}})\right) \\ =&\frac{t}{\sqrt{1+\kappa ^2}} \left( x({\bar{s}})^{\mathsf {T}}\left( \sqrt{\theta _i} v_i^{\mathsf {T}}r\right) _{i \in I_+} + {{\hat{x}}}_{p_{+}+1}({\bar{s}}) \frac{w(r)}{2} \right) + \Vert {\hat{x}}({\bar{s}})\Vert ^2. \end{aligned}$$

so

$$\begin{aligned} \lambda ^{\mathsf {T}}{{\hat{x}}}({\bar{s}}+ t r) = \frac{t}{\sqrt{1+\kappa ^2} \Vert {\hat{x}}({\bar{s}}) \Vert }\left( x({\bar{s}})^{\mathsf {T}}\left( \sqrt{\theta _i} v_i^{\mathsf {T}}r\right) _{i \in I_+} + {{\hat{x}}}_{p_{+}+1}({\bar{s}}) \frac{w(r)}{2}\right) + \Vert {\hat{x}}({\bar{s}})\Vert . \end{aligned}$$

Thus,

$$\begin{aligned} D_r&= \frac{1}{E\sqrt{1+\kappa ^2}} \left( \sum _{i \in I_+} \theta _i \left( v_i^{\mathsf {T}}({\bar{s}}+ \frac{b}{2\theta _i})\right) (v_i^{\mathsf {T}}r) + {{\hat{x}}}_{p_{+}+1}({\bar{s}}) \frac{w(r)}{2} \right) \\&= \frac{1}{E\sqrt{1+\kappa ^2}} \left( \sum _{i \in I_+} \theta _i \left( v_i^{\mathsf {T}}({\bar{s}}+ \frac{b}{2\theta _i})\right) (v_i^{\mathsf {T}}r) + \frac{(w({\bar{s}}) + \kappa + \sqrt{1 + \kappa ^2})w(r)}{4\sqrt{1+\kappa ^2}} \right) ,\\ E_r&= \frac{1}{\root 4 \of {1+\kappa ^2}} \sqrt{ \frac{(w({\bar{s}}) + \kappa + \sqrt{1+\kappa ^2})^2}{4\sqrt{1+\kappa ^2}} + \sum _{i \in I_+} \theta _i \left( v_i^{\mathsf {T}}({\bar{s}}+ \frac{b}{2\theta _i})\right) ^2}. \end{aligned}$$

1.4.2 Root defined by (4.9)

In this case, we look at the equation

$$\begin{aligned}\frac{\Vert x({\bar{s}})\Vert }{\sqrt{1+\kappa ^2}} \Vert y({\bar{s}}+ tr)\Vert + {{\hat{x}}}_{p_{+}+1}({\bar{s}}) {{\hat{y}}}_{p_{-}+ 1}({\bar{s}}+ tr) - {{\hat{x}}}({\bar{s}})^{\mathsf {T}}{{\hat{x}}}({\bar{s}}+ tr) = 0,\end{aligned}$$

which we rewrite as

$$\begin{aligned} \frac{\Vert x({\bar{s}})\Vert }{\sqrt{1+\kappa ^2}} \Vert y({\bar{s}}+ tr)\Vert - ({{\hat{x}}}({\bar{s}})^{\mathsf {T}}{{\hat{x}}}({\bar{s}}+ tr) - {{\hat{x}}}_{p_{+}+1}({\bar{s}}){{\hat{y}}}_{p_{-}+ 1}({\bar{s}}+ tr)) = 0. \end{aligned}$$

which is also an equation of the form

$$\begin{aligned}\sqrt{A_r t^2 + B_r t + C_r} - (D_r t + E_r) = 0.\end{aligned}$$

From the term involving \(\Vert y({\bar{s}}+ tr)\Vert \) we see that

$$\begin{aligned} A_r&= -\frac{\Vert x({\bar{s}})\Vert ^2}{1+\kappa ^2}\sum _{i \in I_-} \theta _i (v_i^{\mathsf {T}}r)^2, \\ B_r&= - 2\frac{\Vert x({\bar{s}})\Vert ^2}{1+\kappa ^2}\sum _{i \in I_-} \theta _i \left( v_i^{\mathsf {T}}({\bar{s}}+ \frac{b}{2\theta _i})\right) (v_i^{\mathsf {T}}r), \\ C_r&= -\frac{\Vert x({\bar{s}})\Vert ^2}{1+\kappa ^2}\sum _{i \in I_-} \theta _i \left( v_i^{\mathsf {T}}({\bar{s}}+ \frac{b}{2\theta _i})\right) ^2. \end{aligned}$$

To find the remaining coefficients, we compute the term

$$\begin{aligned}&{{\hat{x}}}({\bar{s}})^{\mathsf {T}}{{\hat{x}}}({\bar{s}}+ tr) - {{\hat{x}}}_{p_{+}+1}({\bar{s}}){{\hat{y}}}_{p_{-}+ 1}({\bar{s}}+ tr) \\&= \frac{1}{\sqrt{1+\kappa ^2}} x({\bar{s}})^{\mathsf {T}}x({\bar{s}}+ tr) + {{\hat{x}}}_{p_{+}+1}({\bar{s}})({{\hat{x}}}_{p_{+}+1}({\bar{s}}+ tr) - {{\hat{y}}}_{p_{-}+ 1}({\bar{s}}+ tr)) \\&= \frac{1}{\sqrt{1+\kappa ^2}} x({\bar{s}})^{\mathsf {T}}x({\bar{s}}+ tr) + {{\hat{x}}}_{p_{+}+1}({\bar{s}}) \\&= \frac{1}{\sqrt{1+\kappa ^2}} \left( t x({\bar{s}})^{\mathsf {T}}\left( \sqrt{\theta _i} v_i^{\mathsf {T}}r\right) _{i \in I_+} + \Vert x({\bar{s}})\Vert ^2 \right) + {{\hat{x}}}_{p_{+}+1}({\bar{s}}). \end{aligned}$$

Thus,

$$\begin{aligned} D_r&= \frac{1}{\sqrt{1+\kappa ^2}} \sum _{i \in I_+} \theta _i \left( v_i^{\mathsf {T}}({\bar{s}}+ \frac{b}{2\theta _i})\right) (v_i^{\mathsf {T}}r), \\ E_r&= \frac{1}{\sqrt{1+\kappa ^2}} \left( \Vert x({\bar{s}})\Vert ^2 + \frac{w({\bar{s}}) + \kappa + \sqrt{1 + \kappa ^2}}{2}\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chmiela, A., Muñoz, G. & Serrano, F. On the implementation and strengthening of intersection cuts for QCQPs. Math. Program. 197, 549–586 (2023). https://doi.org/10.1007/s10107-022-01808-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-022-01808-5

Keywords

Mathematics Subject Classification

Navigation