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LINEAR CONVERGENCE OF AN ALTERNATING POLAR
DECOMPOSITION METHOD FOR LOW RANK ORTHOGONAL

TENSOR APPROXIMATIONS

SHENGLONG HU AND KE YE

Abstract. Low rank orthogonal tensor approximation (LROTA) is an important problem
in tensor computations and their applications. A classical and widely used algorithm is the
alternating polar decomposition method (APD). In this paper, an improved version iAPD
of the classical APD is proposed. For the first time, all of the following four fundamental
properties are established for iAPD: (i) the algorithm converges globally and the whole
sequence converges to a KKT point without any assumption; (ii) it exhibits an overall
sublinear convergence with an explicit rate which is sharper than the usual Op1{kq for first
order methods in optimization; (iii) more importantly, it converges R-linearly for a generic
tensor without any assumption; (iv) for almost all LROTA problems, iAPD reduces to APD
after finitely many iterations if it converges to a local minimizer.

1. Introduction

As higher order generalizations of matrices, tensors (a.k.a. hypermatrices or multi-way
arrays) are ubiquitous and inevitable in mathematical modeling and scientific comput-
ing [13, 25, 36, 47, 52]. Among numerous tensor problems studied in recent years, tensor
approximation and its related topics have been becoming the main focus, see [12, 34, 36]
and references therein. Applications of tensor approximation are diverse and broad, includ-
ing signal processing [13], computational complexity [36], pattern recognition [2], principal
component analysis [11], etc. We refer interested readers to surveys [12, 23, 34, 43] and
books [25, 36, 52] for more details.

Singular value decomposition (SVD) of matrices is both a theoretical foundation and a
computational workhorse for linear algebra, with applications spreading throughout scientific
computing and engineering [22]. SVD of a given matrix is a rank-one orthogonal decompo-
sition of the matrix [22, 28], and a truncated SVD according to the non-increasing singular
values is a low rank orthogonal approximation of that matrix by the well-known Echart-
Young theorem [19]. While a higher order tensor cannot be diagonalized by orthogonal
matrices in general [36], there are several generalizations of SVD from matrices to tensors,
such as higher order SVD [15], orthogonally decomposable tensor decompositions and ap-
proximations and their variants, see [10, 21, 32, 50, 55, 61] and references therein. In this
paper, we focus on the low rank orthogonal tensor approximation (abbreviated as LROTA)
problem. It is a low rank tensor approximation problem with all the factor matrices being
orthonormal [12,17,34]. This problem is of crucial importance in applications, such as blind
source separation in signal processing and statistics [11–13, 47].
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In the literature, several numerical methods have been proposed to solve this problem,
such as Jacobi-type methods [11], for which the tensor considered usually has a symmetric
structure. Interested readers are referred to [30, 39–41, 46, 59]. A more general problem is
studied, where some factor matrices are orthonormal and the rest of them are unconstrained.
We denote these low rank orthogonal tensor approximation problems by LROTA-s with s the
number of orthonormal factor matrices. For simplicity, LROTA denotes the problem where
all the factor matrices are orthonormal. For LROTA-s, a commonly adopted algorithmic
framework is the alternating minimization method (AMM) [6], under which the alternating
polar decomposition method (APD) is proposed and widely employed [10, 61]. Under a
regularity condition that all matrices in certain iterative sequence are of full rank, it is
proved that every converging subsequence generated by this method for LROTA converges
to a stationary point of the objective function by Chen and Saad [10] in 2009. In 2012,
Uschmajew established a local convergence result under some appropriate assumptions [57].
In 2015, Wang, Chu and Yu proposed an AMM with a modified polar decomposition for
LROTA-1, and established the global convergence without any further assumption for a
generic tensor [61]. In 2019, Guan and Chu [24] established the global convergence for
LROTA-s with general s under a similar regularity condition as [10]. Very recently, Yang
proposed an epsilon-alternating least square method for solve the problem LROTA-s with
general s and established its global convergence without any assumption [62] 1. On the other
hand, the special case of rank-one tensor approximation was systematically studied since the
work of De Lathauwer, De Moor, and Vandewalle [15]. A higher order power method, which
is essentially an application of AMM, was proposed and global convergence results were
established, see [49,58,60]. Moreover, the convergence rate was also estimated in [29,57,63].

Motivated by the development of the convergence analysis of the rank-one case and the
general low rank case, a fundamental question is: is there an algorithm for LROTA such
that all the favorable convergence properties in the rank-one case also hold for the general
low rank case? The answer is affirmative. Given this is true, one hopes that this algorithm
should be as close as possible to the widely used classical APD, so that several questions
raised in the literature can be addressed [10,24,61]. In this paper, we provide an affirmative
answer to the question. Listed below are main contributions of this paper:

(1) we propose an improved version iAPD for the alternating polar decomposition (APD)
method given in [24] for solving LROTA, and show its global convergence without
any assumption;

(2) we establish an overall sublinear convergence of iAPD and present an explicit eventual
convergence rate in terms of the dimension and the order of the underlying tensor.
The derived convergence rate is sub-optimal in the sense that it is sharper than the
usual convergence rate Op1{kq established for first order methods in the literature [5];

(3) we prove that iAPD is linear convergent for a generic tensor without any other as-
sumption;

(4) we also show that for almost all LROTA problems, iAPD reduces to APD after
finitely many iterations if it converges to a local minimizer. In particular, this relaxes
the requirement for each iterative matrix being of full rank in the literature, such
as [10, 24], to a simple requirement on the limit point.

1Yang’s paper is posted during our final preparation of this paper. We can see that we both employ
the proximal technique. A difference is that the proximal correction in our algorithm is adaptive, and a
theoretical investigation is also given (cf. Section 5) for the execution of the proximal correction.
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Other than these, we also prove that every KKT point of LROTA is nondegenerate for a
generic tensor, which might be of independent interests.

The rest of this paper is organized as follows: preliminaries on multilinear algebra, differ-
ential geometry and optimization theory that will be encountered repeatedly in the sequel are
included in Section 2. In particular, the LROTA problem is stated in Section 2.6; Section 3
is devoted to the analysis of the manifold structures of the set of orthogonally decomposable
tensors. In this section, the connection between KKT points of LROTA and critical points
of the projection function on manifolds is established. It is shown that every KKT point of
LROTA for a generic tensor is nondegenerate; the new algorithm iAPD is proposed in Sec-
tion 4 and detailed convergence analysis for this algorithm is given. The overall sub-optimal
sublinear convergence and generic linear convergence are also proved; Section 5 proves that
for almost all LROTA problems, iAPD reduces to APD after finitely many iterations if it
converges to a local minimizer; some final remarks are given in Section 6; to avoid distracting
readers too much by technical details, lemmas are stated when they are needed and proofs
are provided in Appendix A and B.

2. Preliminaries

2.1. Tensors. In this subsection, we provide a review of basic notions of tensors. Given
positive integers k ě 2 and n1, . . . , nk, the tensor space consisting of real tensors of dimension
n1 ˆ ¨ ¨ ¨ ˆ nk is denoted by R

n1 b ¨ ¨ ¨ b R
nk . In this vector space, an inner product and

hence a norm can be defined. The Hilbert-Schmidt inner product of two given tensors
A,B P R

n1 b ¨ ¨ ¨ b R
nk is defined by

xA,By :“
n1
ÿ

i1“1

. . .

nk
ÿ

ik“1

ai1...ikbi1...ik .

The Hilbert-Schmidt norm }A} is then given by (cf. [43])

}A} :“
a

xA,Ay.
In particular, if k “ 2, then an element in R

n1 b R
n2 is simply an n1 ˆ n2 matrix A, whose

Hilbert-Schmidt norm reduces to the Frobenius norm ‖A‖F .
Given a positive integer r and λ1, . . . , λr P R, we denote by diagpλ1, . . . , λrq the diagonal

tensor in R
rb¨ ¨ ¨bR

r with the order being understood from the context. To be more precise,
we have

pdiagpλ1, . . . , λrqqi1...ik “
#

λj, if i1 “ ¨ ¨ ¨ “ ik “ j P t1, . . . , ru,
0, otherwise.

For a given positive integer k, we may regard the tensor diagpλ1, . . . , λrq as the image of
pλ1, . . . , λrq under the map diag : Rr Ñ bk

R
r defined in an obvious way. We also define

the map Diag : bk
R

r Ñ R
r by taking the diagonal of a kth order tensor. By definition,

Diag ˝ diag : Rr Ñ R
r is the identity map.

We define a map τ : Rn1 ˆ ¨ ¨ ¨ ˆ R
nk Ñ R

n1 b ¨ ¨ ¨ b R
nk by

τpxq :“ x1 b ¨ ¨ ¨ b xk. (1)

where x is a block vector

x :“ px1, . . . ,xkq P R
n1 ˆ ¨ ¨ ¨ ˆ R

nk » R
n1`¨¨¨`nk with xi P R

ni for all i “ 1, . . . , k.



4 SHENGLONG HU AND KE YE

For each i P t1, . . . , ku, we define a map τi : Rn1ˆ¨ ¨ ¨ˆR
nk Ñ R

n1b¨ ¨ ¨bR
ni´1bR

ni`1b¨ ¨ ¨bR
nk

by

τipxq :“ x1 b ¨ ¨ ¨ b xi´1 b xi`1 b ¨ ¨ ¨ b xk, x P R
n1 ˆ ¨ ¨ ¨ ˆ R

nk .

Given a tensor A P R
n1 b ¨ ¨ ¨ b R

nk and a block vector x as above, Aτpxq is defined by

Aτpxq :“ xA, τpxqy
and Aτipxq P R

ni is a vector defined implicitly by the relation:

xAτipxq,xiy “ Aτpxq
for any block vector x. Moreover, given k matrices Bpiq P R

miˆni for i P t1, . . . , ku, the
matrix-tensor product pBp1q, . . . , Bpkqq ¨A is a tensor in R

m1 b ¨ ¨ ¨ bR
mk , defined entry-wisely

as
“

pBp1q, . . . , Bpkqq ¨ A
‰

i1...ik
:“

n1
ÿ

j1“1

. . .

nk
ÿ

jk“1

b
p1q
i1j1

. . . b
pkq
ikjk

aj1...jk (2)

for all it P t1, . . . , mtu and t P t1, . . . , ku.

2.2. Stiefel manifolds. Let m ď n be two positive integers and let V pm,nq Ď R
nˆm be

the set of all n ˆ m orthonormal matrices, i.e.,

V pm,nq :“ tU P R
nˆm : UTU “ Iu,

where I is the m ˆ m identity matrix. Indeed, V pm,nq admits a smooth manifold structure
and is called the Stiefel manifold of orthonormal m-frames in R

n. In particular, if m “ n

then V pn, nq simply reduces to the orthogonal group Opnq.
For any A P V pm,nq, the Fréchet normal cone of V pm,nq at A is defined as (cf. [53])

N̂V pm,nqpAq :“ tB P R
nˆm | xB,C ´ Ay ď op}C ´ A}F q for all C P V pm,nqu.

Usually, we set N̂V pm,nqpAq “ H whenever A R V pm,nq. The (limiting) normal cone
NV pn,mqpAq of V pn,mq at A P V pn,mq is defined by (cf. [53])

NV pm,nqpAq :“
#

B P R
nˆm :

Ak P V pm,nq, lim
kÑ8

Ak “ A,

Bk P N̂V pm,nqpAkq, lim
kÑ8

Bk “ B

+

.

It is easily seen from the definition that the normal cone NV pm,nqpAq is always closed. The
indicator function δV pm,nq of V pm,nq is defined by

δV pm,nqpXq :“
#

0 if X P V pm,nq,
`8 otherwise.

Given a function f : Rn Ñ R Y t8u, the regular subdifferential of f at x P R
n is defined as

B̂fpxq :“
#

v P R
n : lim inf

x‰yÑx

fpyq ´ fpxq ´ xv,y ´ xy
}y ´ x} ě 0

+

and the (limiting) subdifferential of f at x is defined as

Bfpxq :“
!

v P R
n : Dtxku Ñ x and tvku Ñ v satisfying vk P B̂fpxkq for all k

)

.
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If 0 P Bfpxq, then x is a critical point of f . An important fact about the normal cone
NV pm,nqpAq and the subdifferential of the indicator function δV pm,nq of V pm,nq at A is (cf. [53])

BδV pm,nq “ NV pm,nq. (3)

Note that V pm,nq is a smooth manifold of dimension mn ´ mpm`1q
2

. It follows from [53,
Chapter 6.C] and [1, 20] that

NV pm,nqpAq “ N̂V pm,nqpAq “ tAS | S P Smˆmu,
where Smˆm Ď R

mˆm is the subspace of m ˆ m symmetric matrices.
Given a matrix B P R

nˆm, the projection of B onto the normal cone of V pm,nq at A is

πNV pm,nqpAqpBq “ ApA
TB ` BTA

2
q.

The tangent space TV pm,nqpAq of V pm,nq at a point A P V pm,nq is the orthogonal com-
plement to the normal cone. Given a matrix B P R

nˆm, the projection of B onto the tangent
space of V pm,nq at a point A P V pm,nq is given by

πTV pm,nqpAqpBq “ A skewpATBq ` pI ´ AATqB, (4)

where skewpCq :“ C´CT

2
is for a square matrix C P R

mˆm. A more explicit formula is given
as

πTV pm,nqpAqpBq “ pI ´ 1

2
AATqpB ´ ABTAq. (5)

2.3. Orthogonally decomposable tensor. A tensor A P R
n1 b ¨ ¨ ¨ bR

nk is called orthog-
onally decomposable (cf. [21, 32, 33, 63]) if there exist orthonormal matrices

U piq “
”

u
piq
1

¨ ¨ ¨ u
piq
r

ı

P V pr, niq, i “ 1, . . . , k

and numbers λj P R for 1 ď j ď r ď mintn1, . . . , nku such that

A “
r

ÿ

j“1

λju
p1q
j b ¨ ¨ ¨ b u

pkq
j . (6)

Here for each i “ 1, . . . , k and j “ 1, . . . , r, the vector u
piq
j P R

ni is the j-th column vector of

the orthonormal matrix U piq. Without loss of generality, we may assume that λj ě 0 for all
j “ 1, . . . , r. Throughout this paper, we will always assume that k ě 3.

Let r, k be positive integers and let n :“ pn1, . . . , nkq be a k-dimensional integer vector.
We denote by Cpn, rq Ď R

n1 b ¨ ¨ ¨ bR
nk the set of all orthogonally decomposable tensors with

rank at most r, i.e.,

Cpn, rq :“
!

A P R
n1 b ¨ ¨ ¨ b R

nk : A “ pU p1q, . . . , U pkqq ¨ diagpλ1, . . . , λrq,

U piq P V pr, niq for all i P t1, . . . , ku, λj P R for all j P t1, . . . , ru
)

. (7)

We also let Dpn, rq Ď R
n1 b ¨ ¨ ¨ b R

nk be the set of all orthogonally decomposable tensors
with rank r, i.e.,

Dpn, rq :“
!

A P R
n1 b ¨ ¨ ¨ b R

nk : A “ pU p1q, . . . , U pkqq ¨ diagpλ1, . . . , λrq,

U piq P V pr, niq for all i P t1, . . . , ku, λj ‰ 0 for all j P t1, . . . , ru
)

. (8)
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Lemma 2.1 (Unique Decomposition). For each A P Dpn, rq, the rank-r decomposition of
A is unique. In particular, the orthogonal decomposition of A is unique.

Proof. It follows from Kruskal’s inequality [34–36] immediately. A direct proof can also be
found in [63]. �

2.4. Morse functions. In the following, we introduce the notion of Morse functions and
recall some of its basic properties. On a smooth manifold M , a smooth function f : M Ñ R

is called a Morse function if each critical point of f on M is nondegenerate, i.e., the Hessian
matrix of f at each critical point is non-singular. The following result is well-known, see for
example [48, Theorem 6.6].

Lemma 2.2 (Projection is Generically Morse). Let M be a submanifold of Rn. For a generic
a “ pa1, . . . , anqT P R

n, the Euclidean distance function

fpxq “ }x ´ a}2

is a Morse function on M .

We will also need the following property (cf. [48, Corollary 2.3]) of nondegenerate critical
points in the sequel.

Lemma 2.3. Let M be a manifold and let f : M Ñ R be a smooth function. Nondegenerate
critical points of f are isolated.

To conclude this subsection, we briefly discuss how critical points behave under a local
diffeomorphism. For this purpose, we recall that two smooth manifolds M1 and M2 are called
locally diffeomorphic if there is a smooth map ϕ : M1 Ñ M2 such that for each point x P M1

there exists a neighborhood U Ď M1 of x and a neighborhood V Ď M2 of ϕpxq such that the
restriction ϕ|U : U Ñ V is a diffeomorphism [18]. In this case, the corresponding ϕ is called
a local diffeomorphism between M1 and M2. It is clear from the definition that two locally
diffeomorphic manifolds must have the same dimension. Moreover, we have the following
result, whose proof can be found in [29, Proposition 5.2].

Proposition 2.4. Let M1 and M2 be two locally diffeomorphic smooth manifolds and let
ϕ : M1 Ñ M2 be the corresponding local diffeomorphism. Let f : M2 Ñ R be a smooth
function. Then x P M1 is a (nondegenerate) critical point of f ˝ϕ on M1 if and only if ϕpxq
is a (nondegenerate) critical point of f on M2.

When f is a smooth function on R
n and M is a submanifold of Rn, we denote by ∇f the

gradient of f as a function on R
n, while we denote by gradpfq the Riemannian gradient of

f as a function on M . In other words, gradpfq is the projection of ∇f to the tangent space
of M .

2.5. Kurdyka- Lojasiewicz property. In this subsection, we will review some basic facts
about the Kurdyka- Lojasiewicz property, which even holds for nonsmooth functions in gen-
eral. Interested readers are referred to [3, 4, 8, 38].

Let p be an extended real-valued function and let Bppxq be the set of sub-differentials
of p at x (cf. [53]). We define dompBpq :“ tx : Bppxq ‰ Hu and take x˚ P dompBpq. If
there exist some η P p0,`8s, a neighborhood U of x˚, and a continuous concave function
ϕ : r0, ηq Ñ R`, such that

(1) ϕp0q “ 0,
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(2) ϕ is C1 on p0, ηq,
(3) for all s P p0, ηq, ϕ1psq ą 0, and
(4) for all x P U X ty : ppx˚q ă ppyq ă ppx˚q ` ηu, the Kurdyka- Lojasiewicz inequality

holds

ϕ1pppxq ´ ppx˚qq distp0, Bppxqq ě 1,

then we say that p has the Kurdyka- Lojasiewicz (abbreviated as KL) property at x˚. Here
distp0, Bppxqq denotes the distance from 0 to the set Bppxq. If p is proper, lower semicontin-
uous, and has the KL property at each point of dompBpq, then p is said to be a KL function.
Examples of KL functions include real subanalytic functions and semi-algebraic functions [9].
In this paper, semi-algebraic functions will be involved, we refer to [7] and references herein
for more details on such functions. In particular, polynomial functions are semi-algebraic
functions and hence KL functions. Another important fact is that the indicator function of a
semi-algebraic set is also a semi-algebraic function [7,9]. Also, a finite sum of semi-algebraic
functions is again semi-algebraic. We assemble these facts to derive the following lemma
which will be crucial to the analysis of the global convergence of our algorithm.

Lemma 2.5. A finite sum of polynomial functions and indicator functions of semi-algebraic
sets is a KL function.

While KL-property is used for global convergence analysis, the  Lojasiewicz inequality dis-
cussed in the rest of this subsection is for convergence rate analysis. The classical  Lojasiewicz
inequality for analytic functions is stated as follows (cf. [45]):

(Classical  Lojasiewicz’s gradient inequality) If f is an analytic function with
fp0q “ 0 and ∇fp0q “ 0, then there exist positive constants µ, κ, and ǫ such that

}∇fpxq} ě µ|fpxq|κ for all }x} ď ǫ.

As pointed out in [3, 8], it is often difficult to determine the corresponding exponent κ

in  Lojasiewicz’s gradient inequality, and it is unknown for a general function. However, an
estimate of the exponent κ in the gradient inequality were derived by D’Acunto and Kurdyka
in [14, Theorem 4.2] when f is a polynomial function. We record this fundamental result in
the next lemma, which will play a key role in our sublinear convergence rate analysis.

Lemma 2.6 ( Lojasiewicz’s Gradient Inequality for Polynomials). Let f be a real polynomial
of degree d. Suppose that fp0q “ 0 and ∇fp0q “ 0. There exist constants c, ǫ ą 0 such that
for all }x} ď ǫ, we have

}∇fpxq} ě c|fpxq|κ with κ “ 1 ´ 1

dp3d ´ 3qn´1
.

Below is a manifold version of the  Lojasiewicz gradient inequality [18].

Proposition 2.7 ( Lojasiewicz’s Gradient Inequality). Let M be a smooth manifold and let
g : M Ñ R be a smooth function for which z˚ is a nondegenerate critical point. Then there
exists a neighborhood U in M of z˚ such that for all z P U

} gradpgqpzq}2 ě κ|gpzq ´ gpz˚q|

for some κ ą 0.
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2.6. Low rank orthogonal tensor approximation. The problem considered in this paper
can be described as follows: given a tensor A P R

n1 b ¨ ¨ ¨ b R
nk , find an orthogonally

decomposable tensor B P R
n1 b ¨ ¨ ¨ b R

nk of rank at most r ď mintn1, . . . , nku such that the
residual }A ´ B} is minimized. More precisely, we will consider the following optimization
problem:

(LROTA(r))
min }A ´ pU p1q, . . . , U pkqq ¨ Υ}2
s.t. Υ “ diagpυ1, . . . , υrq, υi P R,

`

U piq˘T

U piq “ I for all 1 ď i ď k.

(9)

Proposition 2.8 (Maximization Equivalence). The optimization problem (9) is equivalent
to

pmLROTAprqq max
řr

j“1

´

``

U p1q˘T

, . . . ,
`

U pkq˘T
˘

¨ A
¯2

j...j

s.t.
`

U piq˘T

U piq “ I for all 1 ď i ď k
(10)

in the following sense

(1) if pU˚,Υ˚q :“
`

pU p1q
˚ , . . . , U

pkq
˚ q, diagppυ˚q1, . . . , pυ˚qrq

˘

is an optimizer of (9) with the
optimal value }A}2 ´ řr

i“1
pυ˚q2i , then U˚ is an optimizer of (10) with the optimal

value
řr

i“1
pυ˚q2i ;

(2) conversely, if U˚ is an optimizer of (10), then pU˚,Υ˚q is an optimizer of (9) where

Υ˚ “ diag
´

Diag
´

``

U p1q
˚

˘

T

, . . . ,
`

U pkq
˚

˘

T
˘

¨ A
¯¯

.

Proof. By a direct calculation we may obtain

}A ´ pU p1q, . . . , U pkqq ¨ Υ}2 “ }A}2 `
r

ÿ

i“1

υ2

i ´ 2xA, pU p1q, . . . , U pkqq ¨ Υy

“ }A}2 `
r

ÿ

i“1

υ2

i ´ 2
A

``

U p1q˘T

, . . . ,
`

U pkq˘T
˘

¨ A,Υ
E

“ }A}2 `
r

ÿ

i“1

υ2

i ´ 2
r

ÿ

i“1

υi

”

``

U p1q˘T

, . . . ,
`

U pkq˘T
˘

¨ A
ı

i...i
.

Note that υi in the minimization problem (9) is unconstrained for all i P t1, . . . , ru, and they

are mutually independent. Thus, at an optimizer pU˚,Υ˚q :“
`

pU p1q
˚ , . . . , U

pkq
˚ q,Υ˚

˘

of (9),
we must have

pυ˚qi “
”

``

U p1q
˚

˘

T

, . . . ,
`

U pkq
˚

˘

T
˘

¨ A
ı

i...i
for all 1 ď i ď r (11)

and the optimal value is

}A}2 ´
r

ÿ

i“1

pυ˚q2i .

Therefore, problem (9) is equivalent to (10). �

3. KKT Points via Projection onto Manifolds

On the one hand, a numerical algorithm solving the optimization problem (9) (or equiva-
lently its maximization reformulation (10)) is usually designed in the parameter space

Vn,r :“ V pr, n1q ˆ ¨ ¨ ¨ ˆ V pr, nkq ˆ R
r.
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See for example, [10, 24, 61, 62]. On the other hand, from a more geometric perspective,
we can also regard problem (9) as the projection of a given tensor A onto Cpn, rq. A key
ingredient in our study of problem (9) is the relation between these two viewpoints. Once
such a connection is understood, we will be able to derive an algorithm in Vn,r but analyse
it in Cpn, rq. To be more precise, we will study both the problem of the projection

min }A ´ B}2
s.t. B P Dpn, rq, (12)

and its parametrization

(LROTA-P)
min gpU,xq “ 1

2
}A ´ pU p1q, . . . , U pkqq ¨ diagpxq}2

s.t.
`

U piq˘T

U piq “ I for all 1 ď i ď k,

x P R
r
˚,

(13)

where R˚ :“ Rzt0u.
We will first study properties of Cpn, rq and Dpn, rq and then discuss critical points of

problem (12) in Section 3.1. KKT points of (10) and hence (13) will be discussed in Sec-
tion 3.2. The connection between them will be studied in Section 3.3, in which a  Lojasiwicz
inequality for KKT points of (10) will be given. We refer to [18, 26, 48, 54] for basic facts
of differential geometry, algebraic geometry and algebraic topology that will be used in the
sequel.

3.1. Geometry of orthogonally decomposable tensors. Let

Un,r :“ V pr, n1q ˆ ¨ ¨ ¨ ˆ V pr, nkq ˆ R
r
˚. (14)

By the next proposition, Un,r parametrizes the manifold Dpn, rq.
Proposition 3.1. For each positive integer r ď mintn1, . . . , nku, the map

ϕn,r : V pr, n1q ˆ ¨ ¨ ¨ ˆ V pr, nkq ˆ R
r Ñ Cpn, rq,

pU p1q, . . . , U pkq, pλ1, . . . , λrqq ÞÑ pU p1q, . . . , U pkqq ¨ diagpλ1, . . . , λrq
is a surjective map and we have the following:

‚ The permutation group Sr acts on Vn,r such that ϕn,r is Sr-invariant.
‚ The inverse image Un,r “ ϕ´1

n,rpDpn, rqq Ď Vn,r consists of points
`

U p1q, . . . , U pkq, pλ1, . . . , λrq
˘

such that λj ‰ 0 for all 1 ď j ď r. In particular, Un,r is an open submanifold of Vn,r.
‚ Un,r is a principal Sr-bundle on Dpn, rq, i.e., we have

Un,r{Sr » Dpn, rq.
‚ Dpn, rq is a smooth manifold of dimension

dn,r :“ r

«

k
ÿ

i“1

ni ´ kpr ` 1q
2

` 1

ff

.

‚ Cpn, rq “ Ůr
t“0

Dpn, tq is an irreducible algebraic variety whose singularity locus is
Ůr´1

t“0
Dpn, tq. In particular, Cpn, rq has dimension dn,r.
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Proof. We recall that V pr, nq consists of all n ˆ r matrices whose columns are orthonormal.
Hence V pr, nq admits an Sr action by permuting columns. In other words, an element σ in
Sr can be written as an r ˆ r permutation matrix Pσ, the action of Sr on V pr, nq is simply
given by

Sr ˆ V pr, nq Ñ V pr, nq, pσ, Uq ÞÑ UPσ,

and this induces an action

Sr ˆ pV pr, n1q ˆ ¨ ¨ ¨ ˆ V pr, nkq ˆ R
rq Ñ pV pr, n1q ˆ ¨ ¨ ¨ ˆ V pr, nkq ˆ R

rq
pσ, pU p1q, . . . , U pkq, pλ1, . . . , λrqqq ÞÑ pU p1qPσ, . . . , U

pkqPσ, pλσp1q, . . . , λσprqqq.
Now it is straightforward to verify that ϕn,r is Sr-invariant.

Since Dpn, rq consists of all orthogonally decomposable tensors with rank exactly r, its
inverse image Un,r cannot contain a point of the form

pU p1q, . . . , U pkq, pλ1, . . . , λrqq
where λj “ 0 for some 1 ď j ď r by Lemma 2.1. Moreover, we claim that any tensor of the
form

T “ ϕn,r

`

U p1q, . . . , U pkq, pλ1, . . . , λrq
˘

“
`

U p1q, . . . , U pkq˘ ¨ diagpλ1, . . . , λrq
where λj ‰ 0, 1 ď j ď r, must lie in Dpn, rq. Indeed, by definition, we see that T has rank
at most r. Moreover, by the orthogonality of column vectors of each U pjq, j “ 1, . . . , r, the
mode-1 matrix flattening T p1q P R

n1ˆpn2¨¨¨nkq of T has rank r, which implies that T has rank
at least r and hence T has rank r [36,43]. This implies that Un,r is an open subset and hence
an open submanifold of Vn,r.

We notice that Un,r admits an Sr-action by the restriction of that on Vn,r and the fiber
ϕ´1
n,rpT q » Sr if T P Dpn, rq. This implies that Un,r{Sr » Dpn, rq.
Since Sr is a finite group acting on Un,r freely, we conclude that Dpn, rq » Un,r{Sr is a

smooth manifold whose dimension is

dimDpn, rq “ dimUn,r “ dimVn,r “
k

ÿ

j“1

dimV pr, njq ` dimR
r.

Observing that dimV pr, nq “ rpn ´ rq `
`

r

2

˘

, we obtain the desired formula for dimDpn, rq.
The fact that Cpn, rq is an algebraic variety follows directly from the definition. Since

Cpn, rq is the image of the irreducible algebraic variety V pn, rq under the map ϕn,r, we may
conclude that Cpn, rq is irreducible. It is straightforward to verify that the rank of the

differential dϕn,r drops at points in
Ůr´1

t“0
Dpn, tq and this implies that

Ůr´1

t“0
Dpn, tq is the

singular locus of Cpn, rq. �

We show in the next lemma that Un,r is locally diffeomorphic to Dpn, rq.

Lemma 3.2 (Local Diffeomorphism). For any positive integers n1, . . . , nk and r ď mintn1, . . . , nku,
the set Un,r is a smooth manifold and is locally diffeomorphic to the manifold Dpn, rq.

Proof. We recall from Proposition 3.1 that Un,r is a principle Sr-bundle on Dpn, rq. In
particular, since Sr is a finite group, for any T P Dpn, rq, the fiber ϕ´1

n,rpT q of the map

ϕn,r : Un,r Ñ Dpn, rq
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consists of r! points. Therefore, for a small enough neighbourhood W Ď Dpn, rq of T , the
inverse image ϕ´1

n,rpW q is the disjoint union of r! open subsets W1, . . . ,Wr! Ď Un,r and for
each j “ 1, . . . , r!, we have

pϕn,rq|Wj
: Wj Ñ W

is a diffeomorphism. �

By Lemma 3.2 and Proposition 2.4, problems on Dpn, rq can be studied via problems on
Un,r. To that end, the tangent space of Un,r will be given at first. The following result can
be checked directly, see [1, 20].

Proposition 3.3 (Tangent Space of Un,r). At any point pU,xq P Un,r, the tangent space of
Un,r at pU,xq is

TpU,xq Un,r “ TU p1q V pr, n1q ˆ ¨ ¨ ¨ ˆ TU pkq V pr, nkq ˆ R
r, (15)

where TU piq V pr, niq is the tangent space of the Stiefel manifold V pr, niq at U piq, which is

TU piq V pr, niq “ tZ P R
niˆr : pU piqqTZ ` ZTU piq “ 0u, (16)

for all i “ 1, . . . , k.

We can embed Un,r into R
n1ˆr ˆ ¨ ¨ ¨ ˆ R

nkˆr ˆ R
r in an obvious way and hence Un,r

becomes an embedded submanifold of the latter. For a differentiable function f : Un,r Ď
R

n1ˆr ˆ ¨ ¨ ¨ ˆ R
nkˆr ˆ R

r Ñ R, a critical point pU,xq is a point at which the Riemannian
gradient gradpfqpU,xq of f at pU,xq is zero, which is equivalent to the fact that the projection
of the Euclidean gradient ∇fpU,xq onto the tangent space of Un,r at pU,xq is zero. More
explicitly, we have the following characterization.

Lemma 3.4. Let A P V pr, nq and let f : V pr, nq Ď R
nˆr Ñ R be a smooth function. Then

gradpfqpAq “ 0 if and only if
∇fpAq “ Ap∇fpAqqTA, (17)

which is also equivalent to ∇fpAq “ AP for some symmetric matrix P P Srˆr. In particular,
AT∇fpAq is a symmetric matrix.

Proof. The proof of the first equivalence can be found in [44, Proposition 1]. For the second,
we notice that from (17)

AT∇fpAq “ ATAp∇fpAqqTA “ ∇fpAqTA

and this proves that AT∇fpAq is symmetric. Now if we set P :“ AT∇fpAq then (17) can be
written as

∇fpAq “ AP T “ AP.

Conversely, if ∇fpAq “ AP for some symmetric matrix P , then (17) obviously holds by the
symmetry of P and the fact that ATA “ I. �

Let

gpU,xq :“ 1

2
}A ´ pU p1q, . . . , U pkqq ¨ diagpxq}2 (18)

be the objective function of (13). Since the feasible set Dpn, rq (resp. Un,r) of (12) (resp.
(13)) is a smooth manifold, we may apply Proposition 2.4, Lemmas 2.2 and 3.2 to obtain
the following

Proposition 3.5. For a generic tensor A, each critical point of the function g on Un,r is
nondegenerate.
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3.2. KKT points of LROTA. In this subsection, we will derive the KKT system of the
optimization problem (10) and study its properties.

3.2.1. Existence. Let U :“ pU p1q, . . . , U pkqq be the collection of the variable matrices in (10)

and for each 1 ď i ď k and 1 ď j ď r, let u
piq
j be the j-th column of the matrix U piq and let

xj :“ pup1q
j , . . . ,u

pkq
j q and v

piq
j :“ Aτipxjq.

For each 1 ď i ď k, we define a matrix

V piq :“
”

v
piq
1 . . . v

piq
r

ı

, (19)

and a diagonal matrix
Λ :“ diagpAτpx1q, . . . ,Aτpxrqq. (20)

For each 1 ď j ď r, we also set

λjpUq :“
´

``

U p1q˘T

, . . . ,
`

U pkq˘T
˘

¨ A
¯

j...j
“ Aτpxjq “ xA,u

p1q
j b ¨ ¨ ¨ b u

pkq
j y (21)

Now the objective function of (10) can be re-written as

fpUq :“
r

ÿ

j“1

´

``

U p1q˘T

, . . . ,
`

U pkq˘T
˘

¨ A
¯2

j...j
“

r
ÿ

j“1

λjpUq2. (22)

Definition 3.6 (KKT point). Let U “ pU p1q, . . . , U pkqq be a feasible point of (10). If there
exists P “ pP1, . . . , Pkq where Pi P Srˆr for each 1 ď i ď k such that the system

V piqΛ ´ U piqPi “ 0, 1 ď i ď k. (23)

is satisfied, then U is called a Karush-Kuhn-Tucker point (KKT point) and P is called a
Lagrange multiplier associated to U. The set of all multipliers associated to U is denoted by
MpUq.

It follows immediately from the system (23) that for all 1 ď i ď k,

pU piqqTV piqΛ “
`

V piqΛ
˘

T

U piq. (24)

For an equality constrained optimization problem, we say that a feasible point satisfies
linear independence constraint qualification (LICQ) if at this point all the gradients of the
constraints are linearly independent.

Proposition 3.7 (LICQ). At any feasible point of the problem (10), LICQ is satisfied. Thus,
at any local maximizer of (10), the system of KKT condition holds and MpUq is a singleton.

Proof. Suppose on the contrary that LICQ is not satisfied at a feasible point U :“ pU p1q, . . . , U pkqq
of (10). Let Pi P R

rˆr for i “ 1, . . . , k be the corresponding multipliers for the equality con-
straints in (10) such that they are not all zero. To be more precise, Pi’s are defined by

∇U

ˆ k
ÿ

i“1

x
`

U piq˘T

U piq ´ I, Piy
˙

“ 0.

Aligning along the natural block partition as U, we must have

xU piqPi,M
piqy “ 0, M piq P R

niˆr, 1 ď i ď k. (25)

Now from (25) we obtain U piqPi “ 0 and hence Pi “ 0 by the orthonormality of U piq for all
1 ď i ď k, and this contradicts the assumption that not all Pi’s are zero. Therefore, LICQ
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is satisfied, which implies the uniqueness of the multiplier. The rest conclusion follows from
the classical theory of KKT condition [6]. �

Lemma 3.8. A feasible point pU,Υq is a KKT point of problem (9) with multiplier P :“
pP p1q, . . . , P pkqq if and only if U is a KKT point of problem (10) with multiplier P and
Υ “ diag

`

Diag
`

ppU p1qqT, . . . , pU pkqqTq ¨ A
˘˘

.

Proof. According to Proposition 2.8, problem (9) is equivalent to (10), from which we may
obtain the desired correspondence between KKT points. �

3.2.2. Primitive KKT points and essential KKT points. It is possible that for some 1 ď j ď
r, vj approaches to zero along iterations of an algorithm solving the problem (9). In this
case, the resulting orthogonally decomposable tensor is of rank strictly smaller than r. We
will discuss this degenerate case in this section.

Proposition 3.9 (KKT Reduction). Let U “ pU p1q, . . . , U pkqq P V pr, n1q ˆ ¨ ¨ ¨ ˆ V pr, nkq be
a KKT point of problem mLROTA(r) defined in (10) and let 1 ď j ď r be a fixed integer.
Set

Û :“ pÛ p1q, . . . , Û pkqq P V pr ´ 1, n1q ˆ ¨ ¨ ¨ ˆ V pr ´ 1, nkq,
where for each 1 ď i ď k, Û piq is the matrix obtained by deleting the j-th column of U piq. If
Aτpxjq “ 0, then Û is a KKT point of the problem mLROTA(r-1):

max } Diag
```

U p1q˘T

, . . . ,
`

U pkq˘T
˘

¨ A
˘

}2
s.t.

`

U piq˘T

U piq “ I, U piq P R
niˆpr´1q, 1 ď i ď k.

(26)

Proof. By (23), the KKT system of problem (10) is

V piqΛ “ U piqPi for all i “ 1, . . . , k,

where pP1, . . . , Pkq P Srˆr ˆ ¨ ¨ ¨ ˆ Srˆr is the associated Lagrange multiplier. Without loss of
generality, we may assume that j “ r, which implies that the last diagonal element of Λ is
zero. Thus,

pU piqqT

”

v
piq
1 . . . v

piq
r´1 v

piq
r

ı

„

Λ̂ 0
0 0



“ Pi, 1 ď i ď k,

where Λ̂ is the leading pr ´ 1q ˆ pr ´ 1q principal submatrix of Λ. This implies that the last
column of Pi is zero. By the symmetry of Pi, we conclude that Pi is in a block diagonal form
with

Pi “
„

P̂i 0
0 0



, 1 ď i ď k.

Therefore we have
”

v
piq
1 . . . v

piq
r´1 0

ı

„

Λ̂ 0
0 0



“
”

Û piq u
piq
r

ı

„

P̂i 0
0 0



, 1 ď i ď k,

which implies
”

v
piq
1

. . . v
piq
r´1

ı

Λ̂ “ Û piqP̂i, 1 ď i ď k.

Consequently, we may conclude that Û is a KKT point of (26). �

A KKT point U “ pU p1q, . . . , U pkqq P V pr, n1q ˆ ¨ ¨ ¨ ˆ V pr, nkq of problem mLROTA(r) (cf.
(10)) with Aτpxjq ‰ 0 for all 1 ď j ď r is called a primitive KKT point of mLROTA(r).
Iteratively applying Proposition 3.9, we obtain the following
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Corollary 3.10. Let S be a proper subset of t1, . . . , ru with cardinality s :“ |S| ă r and let
U “ pU p1q, . . . , U pkqq P V pr, n1q ˆ ¨ ¨ ¨ ˆ V pr, nkq be a KKT point of mLROTA(r). Set

Û :“ pÛ p1q, . . . , Û pkqq P V pr ´ s, n1q ˆ ¨ ¨ ¨ ˆ V pr ´ s, nkq,

where for each 1 ď i ď k, Û piq is obtained by deleting those columns indexed by S. If
Aτpxjq “ 0 for all j P S, then Û is a primitive KKT point of mLROTA(r-s).

It would happen that several KKT points of mLROTA(r) reduce in this way to the same
primitive KKT point of mLROTA(r-s). We call the set of such KKT points an essential
KKT point. Therefore, there is a one to one correspondence between essential KKT points
of mLROTA(r) and all primitive KKT points of mLROTA(s) for 1 ď s ď r.

3.3. Critical points are KKT points. In this section, we will establish the relation be-
tween KKT points of problem (10) and critical points of g on the manifold Un,r, which is
the objective function defined in (18). To do this, we recall from (5) that the gradient of g
at a point pU,xq P Un,r is given by

gradU piq gpU,xq “ pI ´ 1

2
U piqpU piqqTq

`

V piqΓ ´ U piqpV piqΓqTU piq˘, (27)

grad
x
gpU,xq “ x ´ Diag

`

ppU p1qqT, . . . , pU pkqqTq ¨ A
˘

, (28)

where i “ 1, . . . , k and Γ “ diagpxq is the diagonal matrix formed by the vector x.

Proposition 3.11. A point pU,xq P Un,r is a critical point of g defined in (18) if and only
if pU, diagpxqq is a KKT point of problem (9).

Proof. We recall that a critical point pU,xq P Un,r of g is defined by gradpgqpU,xq “ 0. It
follows from Proposition 3.3 that these critical points are defined by

∇U piqgpU,xq “ U piqPi, 1 ď i ď r

where Pi is some r ˆ r symmetric matrix and

∇xgpU,xq “ 0.

By (28), we have

x “ Diag
`

ppU p1qqT, . . . , pU pkqqTq ¨ A
˘

,

and according to (27), we obtain

∇U piqgpU,xq “ V piqΛ.

Therefore, by (23) a critical point of g on Un,r must come from a KKT point of problem (9).
The converse is obvious and this completes the proof. �

Definition 3.12 (Nondegenerate KKT Point). A KKT point pU,Υq of problem (9) is non-
degenerate if pU,xq P Un,r is a nondegenerate critical point of g with diagpxq “ Υ.

Theorem 3.13 (Finite Essential Critical Points). For a generic tensor, there are only finitely
many essential KKT points for problem (10), and for any positive integers r ą s ą 0, a
primitive KKT point of the problem mLROTA(s) corresponding to an essential KKT point
of the problem mLROTA(r) is nondegenerate.
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Proof. To prove the finiteness of essential KKT points, it is sufficient to show that there are
only finitely many primitive KKT points on Un,r, and the finiteness follows from the layer
structure of the set Vn,r (or equivalently Cpn, rq, cf. Proposition 3.1) and Proposition 3.9.
We first recall that KKT points on Un,r are defined by (23), which is a system of polynomial
equations, which implies that the set Kn,r of KKT points of problem (10) on Un,r is a closed
subvariety of the quasi-variety Un,r. We also note that there are finitely many irreducible
components of Kn,r [26] and hence it suffices to prove that each irreducible component of
Kn,r is a singleton. Now let Z Ď Kn,r be an irreducible component of Kn,r. If Z contains
infinitely many points, then dimZ ě 1 [26]. However, each point in Z determines a critical
point of the function g defined in (18) on the manifold Un,r (cf. Proposition 3.11). This
implies that the set of critical points of g on Un,r has a positive dimension, which contradicts
Lemma 2.3 and Proposition 3.5.

Next, by Corollary 3.10, given a non-primitive KKT point U of the problem mLROTA(r),

we can get a primitive KKT point Û of problem mLROTA(s) with s ă r and hence we have

pÛ,xq P Un,s where x is determined by λjpÛq’s. Since for a generic tensor the function g has
only nondegenerate critical points on Un,s by Proposition 3.5, the second assertion follows
from Proposition 3.11 and Corollary 3.10. �

For simplicity, we abbreviate ∇U piqfpUq as ∇ifpUq for each 1 ď i ď k. We define

}U}2F :“
k

ÿ

i“1

}U piq}2F .

The following result is crucial to the linear convergence analysis in the sequel.

Lemma 3.14 ( Lojasiwicz’s Inequality). If pU˚,Υ˚q is a nondegenerate KKT point of problem
(9), then there exist κ ą 0 and ǫ ą 0 such that

k
ÿ

i“1

}∇ifpUq ´ U piq∇ipfpUqqTU piq}2F ě κ|fpUq ´ fpU˚q| (29)

for any }U ´ U
˚}F ď ǫ. Here f is the objective function of problem (10) defined by (22).

Proof. Let δ ą 0 be the radius of the neighborhood given by Proposition 2.7. Since pU˚,Υ˚q
is a KKT point of (9), we have

DiagpΥ˚q “ Diag
`

ppU p˚,1qqT, . . . , pU p˚,kqqTq ¨ A
˘

.

For a given U, let Υ be defined as

DiagpΥq “ Diag
`

ppU p1qqT, . . . , pU pkqqTq ¨ A
˘

.

Then, there exists ǫ ą 0 such that

}pU,Υq ´ pU˚,Υ˚q}F ď δ (30)

whenever }U ´ U
˚}F ď ǫ.

By Proposition 3.11, Proposition 2.7 is applicable to pU˚,x˚q P Un,r for the function g.
Thus, there exists κ0 ą 0 such that

} gradpgqpU,xq}2 ě κ0|gpU,xq ´ gpU˚,x˚q|
for all }U ´ U

˚}F ď ǫ, where x “ DiagpΥq is formed by the diagonal elements of Υ.
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We first have

|gpU,xq ´ gpU˚,x˚q| “ 1

2
|fpUq ´ fpU˚q|,

since fpUq “ }x}2 and

gpU,xq “ 1

2
}A ´ pU p1q, . . . , U pkqq ¨ diagpxq}2

“ 1

2
}A}2 ´ xA, pU p1q, . . . , U pkqq ¨ diagpxqy ` 1

2
}x}2

“ 1

2
}A}2 ´ xDiag

`

ppU p1qqT, . . . , pU pkqqTq ¨ A
˘

,xy ` 1

2
}x}2

“ 1

2
p}A}2 ´ }x}2q.

By (28) and the definition of x, we also have

grad
x
gpU,xq “ x ´ Diag

`

ppU p1qqT, . . . , pU pkqqTq ¨ A
˘

“ 0.

Since

gradU piq gpU,xq “ pI ´ 1

2
U piqpU piqqTqpV piqΓ ´ U piqpV piqΓqTU piqq, for all i “ 1, . . . , k,

and

∇ifpUq “ V piqΓ, for all i “ 1, . . . , k,

where Γ “ diagpxq is the diagonal matrix formed by the vector x, the assertion will follow if
we can show that

}I ´ 1

2
U piqpU piqqT}F ď κ1

is uniformly bounded by κ1 ą 0 over }U ´ U
˚}F ď ǫ. This is obviously true. The proof is

then complete. �

4. iAPD Algorithm and Convergence Analysis

4.1. Description of iAPD algorithm. In [24], an alternating polar decomposition (APD)
algorithm is proposed to solve the optimization problem (10). Algorithm 4.1 below is an
improved version of the classical APD, which we call iAPD. It is an alternating polar de-
composition method with adaptive proximal corrections and truncations. An iteration step
in iAPD with a truncation is called a truncation iteration. Obviously, there are at most r

truncation iterations.
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Algorithm 4.1. iAPD: Low Rank Orthogonal Tensor Approximation

Input: a nonzero tensor A P R
n1 b¨ ¨ ¨bR

nk , a positive integer r, and a proximal parameter
ǫ.

Step 0 [Initialization]: choose Ur0s :“ pU p1q
r0s , . . . , U

pkq
r0s q P V pr, n1q ˆ ¨ ¨ ¨ ˆ V pr, nkq such

that fpUr0sq ą 0, and a truncation parameter κ P p0,
a

fpUr0sq{rq. Let p :“ 1.

Step 1 [Alternating Polar Decompositions-APD]: Let i :“ 1.

Substep 1 [Polar Decomposition]: If i ą k, go to Step 2. Otherwise, for all j “ 1, . . . , r,
let

xi
j,rps :“ pup1q

j,rps, . . . ,u
pi´1q
j,rps ,u

piq
j,rp´1s,u

pi`1q
j,rp´1s, . . . ,u

pkq
j,rp´1sq, (31)

where u
piq
j,rps is the j-th column of the factor matrix U

piq
rps .

Compute the matrix Λ
piq
rps as

Λ
piq
rps :“ diagpλi´1

1,rps, . . . , λ
i´1

r,rpsq with λi´1

j,rps :“ Aτpxi
j,rpsq for j “ 1, . . . , r, (32)

and the matrix V
piq

rps as

V
piq

rps :“
”

v
piq
1,rps . . . v

piq
r,rps

ı

with v
piq
j,rps :“ Aτipxi

j,rpsq for j “ 1, . . . , r. (33)

Compute the singular value decomposition of the matrix V
piq

rps Λ
piq
rps as

V
piq

rps Λ
piq
rps “ G

piq
rpsΣ

piq
rpspH

piq
rpsqT, G

piq
rps P V pr, niq and H

piq
rps P Oprq, (34)

where the singular values σ
piq
j,rps’s are ordered nonincreasingly in the diagonal matrix Σ

piq
rps.

Then the polar decomposition of the matrix V
piq

rps Λ
piq
rps is

V
piq

rps Λ
piq
rps “ U

piq
rpsS

piq
rps with U

piq
rps :“ G

piq
rpspH

piq
rpsqT, S

piq
rps :“ H

piq
rpsΣ

piq
rpspH

piq
rpsqT. (35)

Substep 2 [Proximal Correction]: If σ
piq
r,rps ă ǫ, then compute the polar decomposition of

the matrix V
piq

rps Λ
piq
rps ` ǫU

piq
rp´1s as

V
piq

rps Λ
piq
rps ` ǫU

piq
rp´1s “ Û

piq
rps Ŝ

piq
rps (36)

for an orthonormal matrix Û
piq
rps P V pr, niq and a symmetric positive semidefinite matrix

Ŝ
piq
rps. Update U

piq
rps :“ Û

piq
rps , and S

piq
rps :“ Ŝ

piq
rps. Set i :“ i ` 1 and go to Substep 1.

Step 2 [Truncation]: If λ0

j,rp`1s “
`

pU piq
rpsqTV

piq
rps

˘

jj
ă κ for some j P J Ď t1, . . . , ru, replace

the matrices U
piq
rps ’s by Û

piq
rps ’s, where Û

piq
rps is an ni ˆ pr´ |J |q matrix formed by the columns

of U
piq
rps corresponding to t1, . . . , ruzJ , for all i P t1, . . . , ku. Update r :“ r ´ |J |, and

U
piq
rps :“ Û

piq
rps for all i P t1, . . . , ku. Go to Step 3.

Step 3: Unless a termination criterion is satisfied, let p :“ p` 1 and go back to Step 1.

4.2. Properties of iAPD. In this section, we derive some inequalities for the increments
of the objective function during iterations. To do this, we define

Ui,rps :“ pU p1q
rps , . . . , U

piq
rps , U

pi`1q
rp´1s , . . . , U

pkq
rp´1sq (37)
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for each 1 ď i ď k, and

Urps :“ pU p1q
rps , . . . , U

pkq
rps q, (38)

which is equal to Uk,rps “ U0,rp`1s for each p P N. We remark that the j-th column of a factor

matrix U
piq
rps is denoted by u

piq
j,rps for each 1 ď j ď r while the superscript i for the block vector

xi
j,rps is not bracketed. For each 1 ď j ď r and p P N, we also denote

λk
j,rp´1s “ λ0

j,rps, (39)

where λi´1

j,rps is defined in (32) for the i-th iteration. One immediate observation is that if the

p-th iteration in Algorithm 4.1 is not a truncation iteration, then the sizes of the matrices
in Urps and those in Urp´1s are the same. Also if the number of iterations in Algorithm 4.1 is
infinite, then there is a sufficiently large N0 such that the p-th iteration is not a truncation
iteration for any p ě N0. The proof of the next lemma can be found in Appendix B.1.

Lemma 4.2 (Monotonicity of iAPD). If the p-th iteration in Algorithm 4.1 is not a trun-
cation iteration, then for each 0 ď i ď k ´ 1, we have

fpUi`1,rpsq ´ fpUi,rpsq ě ǫ

2
}U pi`1q

rps ´ U
pi`1q
rp´1s}2F . (40)

Proposition 4.3 (Sufficient Decrease). If the p-th iteration in Algorithm 4.1 is not a trun-
cation iteration, then we have

fpUrpsq ´ fpUrp´1sq ě ǫ

2
}Urps ´ Urp´1s}2F . (41)

Proof. We have

fpUrpsq´fpUrp´1sq “
k´1
ÿ

i“0

`

fpUi`1,rpsq´fpUi,rpsq
˘

ě ǫ

2

k´1
ÿ

i“0

}U pi`1q
rps ´U

pi`1q
rp´1s}2F “ ǫ

2
}Urps´Urp´1s}2F ,

where the inequality follows from (40) in Lemma 4.2. �

At each truncation iteration, the number of columns of the matrices in Urps is decreased
strictly. The first issue we have to address is that the iteration Urps is not vacuous, i.e., the
numbers of the columns of the matrices in Urps are stable and positive. We have the following
proposition, which is recorded for latter reference.

Proposition 4.4. The number of columns of U
piq
rps’s will be stable at a positive integer s ď r

and there exists N0 such that fpUrpsq is nondecreasing for all p ě N0.

Proof. Since the initial number r of columns is finite, the truncation will occur at most r

times and the total decreased number of columns of matrices in Urps is bounded above by
r. It follows from Step 2 of Algorithm 4.1 and Lemma 4.2 that if the p-th iteration is a
truncation iteration and the number of columns of the matrices in Urp´1s is decreased from
r1 to r2 ă r1, then we have

fpUrpsq ě fpUrp´1sq ´ pr1 ´ r2qκ2.

By the truncation strategy in Algorithm 4.1, after all the truncation iterations, the value
of the objective function will decrease at most rκ2. Moreover, at each iteration without
truncation, the value of the objective function is nondecreasing by Lemma 4.2 and rκ2 ă
fpUr0sq. Hence, Urps cannot be vacuous. As there can only be a finite number of truncations,
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there exists N0 such that for any p ě N0, the p-th iteration is not a truncation iteration,
and the conclusion then follows. �

Let us consider the following optimization problem

max
U

hpUq :“ fpUq `
k

ÿ

i“1

δV pr,niqpU piqq. (42)

It is straightforward to verify that (42) is an unconstrained reformulation of problem (10)
and h is a KL function according to Lemma 2.5. Readers can find the proof of the next
lemma in Appendix B.2.

Lemma 4.5 (Subdifferential Bound). If the pp`1q-st iteration is not a truncation iteration,
then there exists a subdifferential Wrp`1s P BhpUrp`1sq such that

}Wrp`1s}F ď
?
kp2r

?
r}A}2 ` ǫq}Urp`1s ´ Urps}F . (43)

4.3. Global convergence. The following classical result can be found in [4].

Lemma 4.6 (Abstract Convergence). Let p : Rn Ñ R Y t˘8u be a proper lower semicon-
tinuous function and let txpkqu Ď R

n be a sequence satisfying the following properties

(1) there is a constant α ą 0 such that

ppxpk`1qq ´ ppxpkqq ě α}xpk`1q ´ xpkq}2,

(2) there is a constant β ą 0 and a wpk`1q P Bppxpk`1qq such that

}wpk`1q} ď β}xpk`1q ´ xpkq},

(3) there is a subsequence txpkiqu of txpkqu and x˚ P R
n such that

xpkiq Ñ x˚ and ppxpkiqq Ñ ppx˚q as i Ñ 8.

If p has the Kurdyka- Lojasiewicz property at the point x˚, then the whole sequence txpkqu
converges to x˚, and x˚ is a critical point of p.

Regarding the global convergence of Algorithm 4.1, by Proposition 4.4, we can assume
without loss of generality that there is no truncation iteration in the sequence tUrpsu gener-
ated by Algorithm 4.1.

Proposition 4.7. Given a sequence tUrpsu generated by Algorithm 4.1, the sequence tfpUrpsqu
increases monotonically and hence converges.

Proof. Since the sequence tUrpsu is bounded, tfpUrpsqu is bounded as well by the definition
(cf. (22)). The convergence then follows from Proposition 4.4. �

Theorem 4.8 (Global Convergence). Any sequence tUrpsu generated by Algorithm 4.1 is
bounded and converges to a KKT point of the problem (10).

Proof. Obviously, the sequence tUrpsu is bounded and the function h is continuous on the
product of the Stiefel manifolds. The convergence follows from Proposition 4.3, Lemma 4.5,
Lemma 4.6, and Proposition 4.7. �
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4.4. Sublinear convergence rate. We consider the following function

qpU,Pq :“ fpUq ´
k

ÿ

i“1

xP piq, pU piqqTU piq ´ Iy, (44)

which is a polynomial of degree 2k in N :“ řk

i“1
prni `

`

r`1

2

˘

q variables:

pU,Pq “ pU p1q, . . . , U pkq, P p1q, . . . , P pkqq P R
n1ˆr ˆ ¨ ¨ ¨ ˆ R

nkˆr ˆ Srˆr ˆ ¨ ¨ ¨ ˆ Srˆr .

Let

τ :“ 1 ´ 1

2kp6k ´ 3qN´1
, (45)

which is the  Lojasiewicz exponent of the polynomial q obtained by Lemma 2.6. We suppose
that U

˚ is a KKT point of (10) with the multiplier P
˚. For

q̂pU,Pq :“ qpU,Pq ´ qpU˚,P˚q, (46)

we must have
q̂pU˚,P˚q “ 0, ∇q̂pU˚,P˚q “ 0.

Thus according to Lemma 2.6, there exist some γ, c ą 0 such that

}∇q̂pU,Pq}F ě c|q̂pU,Pq|τ whenever }pU,Pq ´ pU˚,P˚q}F ď γ.

Therefore,
k

ÿ

i“1

}∇ifpUq ´ 2U piqP piq}2F ě c2pfpUq ´ fpU˚qq2τ (47)

for any feasible point U of (10) satisfying }pU,Pq ´ pU˚,P˚q}F ď γ.

Theorem 4.9 (Sublinear Convergence Rate). Let tUrpsu be a sequence generated by Algo-
rithm 4.1 for a given nonzero tensor A P R

n1 b ¨ ¨ ¨ b R
nk and let τ be defined by (45). The

following statements hold:

(1) the sequence tfpUrpsqu converges to f˚, with sublinear convergence rate at least Opp 1

1´2τ q,
that is, there exist M1 ą 0 and p0 P N such that for all p ě p0

f˚ ´ fpUrpsq ď M1 p
1

1´2τ ; (48)

(2) tUrpsu converges to U
˚ globally with the sublinear convergence rate at least Opp τ´1

2τ´1 q,
that is, there exist M2 ą 0 and p0 P N such that for all p ě p0

}Urps ´ U
˚}F ď M2 p

τ´1

2τ´1 .

Proof. In the following, we consider the sequence tUrpsu generated by Algorithm 4.1. Let

P
piq
rps :“ S

piq
rps ´ αi,rpsI :“

#

S
piq
rps ´ ǫI if proximal correction is executed,

S
piq
rps otherwise,

where αi,rps P t0, ǫu. We also have that

S
piq
rps “

#

pU piq
rpsqTpV piq

rps Λ
piq
rps ` ǫU

piq
rp´1sq if proximal correction is executed,

pU piq
rpsqTV

piq
rps Λ

piq
rps otherwise.

Note that tUrpsu converges by Theorem 4.8 and hence tV piq
rps Λ

piq
rpsu converges. Recall that the

proximal correction step is determined by singular values of the matrices V
piq

rps Λ
piq
rps’s. Thus,
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for sufficiently large p (say p ě p0), αi,rps will be stable for all p and 1 ď i ď r. By Lemma 4.5
and (82), we have

}∇ifpUrp`1sq ´ 2U
piq
rp`1sS

piq
rp`1s ` 2αU

piq
rp`1s}F ď pr

?
r}A}2 ` ǫq}U piq

rp`1s ´ U
piq
rps}F . (49)

Since tUrpsu converges by Theorem 4.8, we see that

lim
pÑ8

P
piq
rps “ lim

pÑ8
pU piq

rpsqT
`

V
piq

rps Λ
piq
rps ` αU

piq
rp´1s

˘

´ αI “ pU p˚,iqqTV p˚,iqΛ˚ “ P p˚,iq.

Hence for sufficiently large p, we may conclude that

}pUrps,Prpsq ´ pU˚,P˚q}F ď γ.

This implies

c2pfpUrpsq ´ fpU˚qq2τ ď
k

ÿ

i“1

}∇ifpUrpsq ´ 2U
piq
rpsP

piq
rps }2F

ď 2
k

ÿ

i“1

}∇ifpUrp`1sq ´ 2U
piq
rp`1sP

piq
rp`1s}2F

` 2
k

ÿ

i“1

}∇ifpUrpsq ´ 2U
piq
rpsP

piq
rps ´

`

∇ifpUrp`1sq ´ 2U
piq
rp`1sP

piq
rp`1s

˘

}2F (50)

ď 2pkpr
?
r}A}2 ` ǫq2 ` Lq}Urp`1s ´ Urps}2F

ď pkpr
?
r}A}2 ` ǫq2 ` LqǫpfpUrp`1sq ´ fpUrpsq,

where the first inequality follows from (47), the third from (49) and the fact that the function
in (50) is Lipschitz continuous since αi,rps is stable for sufficiently large p, and the last one
follows from Proposition 4.3. Here L is the Lipschitz constant of the function in (50) on the
product of Stiefel manifolds.

If we set βp :“ fpU˚q ´ fpUrpsq, then we have

βp ´ βp`1 ě Mβ2τ
p

for some constant M ą 0, from which we can show

β1´2τ
p`1 ´ β1´2τ

p ě p2τ ´ 1qM.

Thus,

β1´2τ
p ě Mp2τ ´ 1qpp ´ p0q ` β1´2τ

p0

and the conclusion follows since τ P p0, 1q. For a more detailed analysis on the sequence
tβpu, we refer readers to [29, Section 3.4]. �

We remark that the convergence rate in (48) is faster than the classical Op1{pq for first
order methods in optimization [5], while the optimal rate is Op1{p2q for convex problems by
the celebrated work of Nesterov [51].



22 SHENGLONG HU AND KE YE

4.5. Linear convergence. In this section, we will establish the linear convergence of Algo-
rithm 4.1. The proof of the next lemma is available in Appendix B.3.

Lemma 4.10 (Relative Error). There exists a constant γ ą 0 such that

}∇ifpUrp`1sq ´ U
piq
rp`1sp∇ifpUrp`1sqqTU

piq
rp`1s}F ď γ}U piq

rps ´ U
piq
rp`1s}F

for all 1 ď i ď k and p P N.

Theorem 4.11 (Linear Convergence Rate). Let tUrpsu be a sequence generated by Algo-
rithm 4.1 for a given nonzero tensor A P R

n1 b ¨ ¨ ¨ b R
nk . If Urps Ñ U

˚ with U
˚ a nonde-

generate KKT point of (10), then the whole sequence tUrpsu converges R-linearly to U
˚.

Proof. By Theorem 4.8, the sequence tUrpsu converges globally to U
˚, which together with

x˚ :“ Diag
`

ppU p˚,1qqT, . . . , pU p˚,kqqTq ¨ A
˘

is a nondegenerate critical point of the function g

on Un,r. Hence for a sufficiently large p, Lemma 3.14 implies that

k
ÿ

i“1

}∇ifpUrpsq ´ U
piq
rps∇ipfpUrpsqqTU

piq
rps}2F ě κ|fpUrpsq ´ fpU˚q|.

On the other hand, by Lemma 4.10, we have

k
ÿ

i“1

}∇ifpUrpsq ´ U
piq
rps∇ipfpUrpsqqTU

piq
rps}2F ď kγ2}Urps ´ Urp´1s}2F .

Thus,

fpUrpsq ´ fpUrp´1sq ě ǫ

2
}Urps ´ Urp´1s}2F

ě κǫ

2kγ2
pfpU˚q ´ fpUrpsqq,

where the first inequality follows from Proposition 4.3, and the second follows from the
preceding two inequalities and Proposition 4.7. Therefore, for a sufficiently large p, we have

fpU˚q ´ fpUrpsq ď 2kγ2

2kγ2 ` κǫ

`

fpU˚q ´ fpUrp´1sq
˘

, (51)

which establishes the local Q-linear convergence of the sequence tfpUrpsqu. Consequently, we
have

}Urps ´ Urp´1s}F ď
c

2

ǫ

b

fpUrpsq ´ fpUrp´1sq

ď
c

2

ǫ

b

fpU˚q ´ fpUrp´1sq

ď
c

2

ǫ

«

d

2kγ2

2kγ2 ` κǫ

ffp´1
b

fpU˚q ´ fpUr0sq,

which implies that
8
ÿ

p“p0

}Urps ´ Urp´1s}F ă 8
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for any sufficiently large positive integer p0. As Urps Ñ U
˚, we have

}Urps ´ U
˚}F ď

8
ÿ

s“p

}Urs`1s ´ Urss}F .

Hence, we obtain

}Urps ´ U
˚}F ď

c

2

ǫ

b

fpU˚q ´ fpUr0sq
1

1 ´
b

2kγ2

2kγ2`κǫ

”

d

2kγ2

2kγ2 ` κǫ

ıp

,

which is the claimed R-linear convergence of the sequence tUrpsu and this completes the
proof. �

The following result follows from Theorems 4.11 and 3.13.

Theorem 4.12 (Generic Linear Convergence). If tUrpsu is a sequence generated by Algo-
rithm 4.1 for a generic tensor A P R

n1 b ¨ ¨ ¨ b R
nk , then the sequence tUrpsu converges

R-linearly to a KKT point of (10).

5. Discussions on Proximal Correction and Truncation

In this section, we will carry out a further study of proximal corrections and truncation
iterations in Algorithm 4.1. We will prove that if we make an appropriate assumption on
the limiting point, then the truncation iteration is unnecessary and proximal corrections are
only needed for finitely many times. Thus, our iAPD reduces to the classical APD proposed
in [24] after finitely many iterations. Remarkably, the assumption on the whole iteration
sequence (cf. [24, Assumption A]) is vastly relaxed to a requirement on the limiting point.
Together with conclusions in Section 3 about KKT points, our results in this section can
shed some light on the further understanding of APD and iAPD.

5.1. Proximal correction. In this subsection, we will prove that in most situations, the
proximal correction in Algorithm 4.1 is unnecessary. Before we proceed, we introduce the
notion of regular KKT point .

Definition 5.1 (Regular KKT Point). A KKT point U :“ pU p1q, . . . , U pkqq P R
n1ˆr ˆ ¨ ¨ ¨ ˆ

R
nkˆr of (10) is called a regular KKT point if the matrix V piqΛ (cf. (19) and (20)) is of rank

at least mintr, ni ´ 1u for each 1 ď i ď k.

The requirement for a regular KKT point in Definition 5.1 is natural. The matrix U piq is
orthonormal and hence it is of full rank, for each 1 ď i ď k. On the other hand, these matrices
are polar orthonormal factor matrices of V piqΛ’s by Algorithm 4.1. If for some 1 ď i ď k,
the matrix V piqΛ is of defective rank, then the best rank r approximation of the i-th factor
matrix is not unique. The case that r “ ni is an exceptional case, see Lemma A.8. With
Lemma A.8, we have a revised proximal correction step, which is described in Algorithm 5.2.
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Algorithm 5.2. Revisited Proximal Step
τ ą ǫ is a given constant.

Substep 2 [Revised Proximal Correction]: If σ
piq
r,rps ă ǫ, then consider the following two

cases.

Case (i) If r “ ni and σ
piq
r´1,rps ě τ , then define a vector

ĝpiq
r :“

#

´g
piq
r if xgpiq

r , pU piq
rp´1sH

piq
rpsqry ă 0

g
piq
r otherwise

where g
piq
r is the r-th column of the matrix G

piq
rps and similar for pU piq

rp´1sH
piq
rpsqr.

Form a matrix Ĝ
piq
rps from G

piq
rps by replacing the last column with ĝ

piq
r . Let

U
piq
rps :“ Ĝ

piq
rpspH

piq
rpsqT and S

piq
rps :“ pU piq

rpsqTV
piq

rps Λ
piq
rps. (52)

Case (ii) For the other cases, compute the polar decomposition of the matrix V
piq

rps Λ
piq
rps `

ǫU
piq
rp´1s as

V
piq

rps Λ
piq
rps ` ǫU

piq
rp´1s “ Û

piq
rps Ŝ

piq
rps

for an orthonormal matrix Û
piq
rps P V pr, niq and a symmetric positive semidefinite

matrix Ŝ
piq
rps. Update U

piq
rps :“ Û

piq
rps and S

piq
rps :“ Ŝ

piq
rps.

Set i :“ i ` 1 and go to Substep 1.

If we replace the Substep 2 in Algorithm 4.1 by the revised version described in Algo-
rithm 5.2, then the sequence tUrpsu still has the sufficient decreasing property. This is the
content of the following lemma.

Lemma 5.3 (Revised Version). Suppose that τ ą ǫą 0. For any p P N such that the p-th
iteration is not a truncation iteration, we have

fpUi`1,rpsq ´ fpUi,rpsq ě 1

2
mintǫ, τ ´ ǫu}U pi`1q

rps ´ U
pi`1q
rp´1s}2F , 0 ď i ď k ´ 1. (53)

Moreover, the matrix S
piq
rps defined in (52) is symmetric.

Proof. The matrix S
piq
rps is obviously symmetric by a direct calculation. For the decreasing

property, it is sufficient to prove the result for Case (i) in Algorithm 5.2. We suppose that at

iteration p and i, Case (i) of Algorithm 5.2 is executed. In this case, g
piq
r is totally determined

(up to sign) by the first pr ´ 1q columns of the matrix G
piq
rps. It follows from Lemma A.8 and

the choice of ĝ
piq
r that

}ĝpiq
r ´ pU piq

rp´1sH
piq
rpsqr} “ mint}gpiq

r ´ pU piq
rp´1sH

piq
rpsqr}, }gpiq

r ` pU piq
rp´1sH

piq
rpsqr}u

ď }pĜpiq
rpsq1 ´ pU piq

rp´1sH
piq
rpsq1}F

“ }pGpiq
rpsq1 ´ pU piq

rp´1sH
piq
rpsq1}F , (54)

where pAq1 represents the ni ˆ pr ´ 1q submatrix formed by the first pr ´ 1q columns of a

given ni ˆ r matrix A. Here since Ĝ
piq
rps is defined by replacing the last column of G

piq
rps by ĝ

piq
r ,

we have pĜpiq
rpsq1 “ pGpiq

rpsq1, which immediately implies (54).
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We then have
r

ÿ

j“1

λi´1

j,rpspλi
j,rps ´ λi´1

j,rpsq “ TrppU piq
rpsqTV

piq
rps Λ

piq
rpsq ´ TrppU piq

rp´1sqTV
piq

rps Λ
piq
rpsq

“ xGpiq
rpsΣ

piq
rpspH

piq
rpsqT, U

piq
rps ´ U

piq
rp´1sy

“ xGpiq
rpsΣ

piq
rps, Ĝ

piq
rps ´ U

piq
rp´1sH

piq
rpsy

ě xpGpiq
rpsq1Σ̃

piq
rps, pĜpiq

rpsq1 ´ pU piq
rp´1sH

piq
rpsq1y ´ ǫ|xĝpiq

r , ĝpiq
r ´ pU piq

rp´1sH
piq
rpsqry|

ě τ}pĜpiq
rpsq1 ´ pU piq

rp´1sH
piq
rpsq1}2F ´ ǫ}ĝpiq

r ´ pU piq
rp´1sH

piq
rpsqr}2

ě pτ ´ ǫq}pĜpiq
rpsq1 ´ pU piq

rp´1sH
piq
rpsq1}2F

ě 1

2
pτ ´ ǫq}Ĝpiq

rps ´ U
piq
rp´1sH

piq
rps}2F

“ 1

2
pτ ´ ǫq}U piq

rps ´ U
piq
rp´1s}2F , (55)

where Σ̃
piq
rps is the pr´1qˆpr´1q leading principal submatrix of Σ

piq
rps, the first inequality follows

from σ
piq
r,rps ă ǫ, the second inequality follows from σ

piq
r´1,rps ě τ , the last two inequalities both

follow from (54). With (55), the rest of the proof is the same as that of Lemma 4.2 and the
conclusion follows. �

With Lemma 5.3, all the convergence results established in Section 4 hold as well.

Theorem 5.4 (Regular KKT point). Let A be a generic tensor. If U is a local maximizer of
problem (10) where each entry of DiagpΥq is nonzero, then pU,DiagpΥqq is a nondegenerate
critical point of g defined in (18) and U is a regular KKT point of problem (10).

Proof. If DiagpΥq is a vector with all nonzero components, then we must have pU,DiagpΥqq P
Un,r. Moreover, Proposition 3.11 implies that pU,DiagpΥqq is a critical point of g and since
g is a Morse function on Un,r for a generic tensor A by Proposition 3.5, it is actually a
nondegenerate critical point. According to Lemma 2.3, we may conclude that pU,DiagpΥqq
is isolated, i.e., g has no other non-degenerate critical point near pU,DiagpΥqq.

In the following, we will prove that the matrix V piqΛ defined by (19) and (20) is of rank
at least mintr, ni ´ 1u for all i “ 1, . . . , k. Suppose on the contrary that there exists some
i P t1, . . . , ku such that the matrix V piqΛ has rank s ă mintr, ni ´ 1u. We consider the
singular value decomposition of V piqΛ

V piqΛ “ UΣV T

with U :“ rU1 U2s P V pr, niq, U1 P R
niˆs, Σ P R

rˆr, V “ rV1 V2s P Oprq and V1 P R
rˆs.

Hence
V piqΛ “ pUV TqpV ΣV Tq

is a polar decomposition of V piqΛ with the polar orthonormal factor matrix UV T. Since the
rank of V piqΛ is s ă mintr, ni ´1u, the polar decomposition of the matrix V piqΛ is not unique
and has the form

V piqΛ “ P pV ΣV Tq,
where

P “ U1V
T

1
` U2QV T

2
P V pr, niq for some Q P Opr ´ sq.
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Since mintr, ni ´ 1u ą s, we must have ni ´ s ě 2 and this implies that U2 can be chosen
from the following set

C :“ tW2 P R
niˆpr´sq : rU1 W2s P V pr, niqu.

Since U1 is a fixed element in V ps, niq, C is isomorphic to V pr ´ s, ni ´ sq and hence
C Ď R

niˆpr´sq is an irreducible closed subvariety of dimension

dimC “ 1

2
pr ´ sq ppni ´ rq ` pni ´ s ´ 1qq ě 1.

Therefore, in any small neighborhood of P , there exists an orthonormal matrix P̃ such that
P̃ also gives a polar orthonormal factor matrix of V piqΛ. Now if we fix the other U piq’s and
Υ, then

gppU p1q, . . . , U pi´1q, P̃ , U pi`1q, . . . , U pkqq,DiagpΛqq “ }A}2 ´ 2xV piqΛ, P̃ y ` }Υ}2

“ }A}2 ´ 2xV piqΛ, P y ` }Υ}2,

where the second equality follows from the fact that P̃ is also a polar orthonormal factor
matrix of V piqΛ. Therefore, g is constant at such a point

ppU p1q, . . . , U pi´1q, P̃ , U pi`1q, . . . , U pkqq,DiagpΥqq.

Since pU,Υq is a local minimizer of (9) (or equivalently, U is a local maximizer of (10)), we
may conclude that such a point is also a local minimizer of (9). In particular, each such
point corresponds to a critical point of g on Un,r by Proposition 3.7 and Proposition 3.11.
However, this contradicts to the fact that pU,DiagpΥqq is an isolated critical point of g on
Un,r. �

Corollary 5.5. For a generic tensor A, there exist τ ą ǫ ą 0 such that if Substep 2
in Algorithm 4.1 is replaced by Algorithm 5.2, then the proximal step (i.e., Case (ii) in
Algorithm 5.2) will only be executed finitely many times if the algorithm converges to a local
maximizer of (10).

Proof. For a generic tensor, there are finitely many essential KKT points whose correspond-
ing primitive KKT points are all nondegenerate by Theorem 3.13. Therefore, there exists a
constant τ ą 0 such that it is strictly smaller than the smallest positive singular values of
all V piqΛ’s determined by these primitive KKT points.

We take 0 ă ǫ ă τ and let tUrpsu be a sequence generated by the modified algorithm
which converges to U

˚. Note that the convergence is guaranteed by Lemma 5.3 and results in

Section 4. Let Λ˚ be the limit of Λ
piq
rps defined in (32) and V p˚,iq the limit of V

piq
rps defined in (33).

The truncation iteration ensures that DiagpΛ˚q is a vector with each component nonzero.
Thus, by Theorem 5.4, the limit point U

˚ is a regular KKT point of (10). Consequently,
the rank of the matrix V p˚,iqΛ˚ is either of full rank and hence the proximal correction step
will not be executed by the choice of ǫ and τ , or the rank of the matrix V p˚,iqΛ˚ is of rank
pr ´ 1q when r “ ni, in which case Case (i) in Algorithm 5.2 will be executed by the choice
of ǫ and τ . Therefore, after finitely many iterations, Case (ii) in Algorithm 5.2 will not be
executed. �
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5.2. Truncation. In this subsection, we will prove that for almost all LROTA problems,
local minimizers of (9) are actually contained in the manifold Dpn, rq. Therefore, if Algo-
rithm 4.1 converges to a local minimizer of (9), we can choose a suitable κ ą 0 such that
the truncation step (i.e., Step 2) in Algorithm 4.1 is unnecessary.

Theorem 5.6. If the sequence n “ pn1, . . . , nkq and the positive integer r ď mintn1, . . . , nku
satisfies the relation

dn,r´1 ă
k

ź

i“1

pni ´ r ` 1q, (56)

where dn,r´1 :“ pr´ 1q
”

řk
i“1

ni ´ kr
2

` 1
ı

, then for a generic A P R
n1ˆ¨¨¨ˆnk , each local mini-

mizer of problem (9) is of the form pU p1q, . . . , U pkq, pλ1, . . . , λrqq P Vpr, n1qˆ¨ ¨ ¨ˆVpr, nkqˆR
r

such that
pU p1q, . . . , U pkqq ¨ diagpλ1, . . . , λrq P Dpn, rq.

Proof. We consider the subset Z Ď R
n1ˆ¨¨¨ˆnk consisting of tensors of the form

pV p1q, . . . , V pkqq ¨ diagpµ1, . . . , µr´1q ` X .

Here V piq P Vpr ´ 1, niq, µj P R, and X is a linear combination of decomposable tensors
v1 b ¨ ¨ ¨ b vk where for each i “ 1, . . . , k,

(1) vi P R
ni is a unit norm vector;

(2) if vi is not a column vector of V piq, then vT

i V
piq “ 0;

(3) and there exists some 1 ď j ď k such that vj is a column vector of V pjq.

We notice that

pV p1q, . . . , V pkqq ¨ diagpµ1, . . . , µr´1q P Cpn, r ´ 1q
and X is contained in a vector space of dimension at most

k
ź

i“1

ni ´
k

ź

i“1

pni ´ r ` 1q.

This implies that the dimension of Z is bounded above by

dimCpn, r ´ 1q `
˜

k
ź

i“1

ni ´
k

ź

i“1

pni ´ r ` 1q
¸

“ dn,r´1 `
˜

k
ź

i“1

ni ´
k

ź

i“1

pni ´ r ` 1q
¸

,

since dimCpn, r ´ 1q “ dn,r´1 by Proposition 3.1. In particular, we have

dimZ “ dimZ ă
ź

i“1

ni,

where Z is the Zariski closure of Z. Next we suppose that A P U :“ R
n1ˆ¨¨¨ˆnkzZ and there

exist pV p1q, . . . , V pkqq P Vpr ´ 1, n1q ˆ ¨ ¨ ¨ ˆ Vpr ´ 1, nkq and pµ1, . . . , µr´1q P R
r´1 such that

pV p1q, . . . , V pkq, pµ1, . . . , µr´1qq is a local minimizer of (9). We can write

X :“ A ´ pV p1q, . . . , V pkqq ¨ diagpµ1, . . . , µr´1q
as a linear combination of decomposable tensors v1 b ¨ ¨ ¨ b vk, such that

(1) vi P R
ni is a unit norm vector;

(2) either of the following occurs:
(a) for each i “ 1, . . . , k, vi is a column vector of V piq;
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(b) for each i “ 1, . . . , k, vT

i V
piq “ 0.

According to the choice of A, there exists v1 b ¨ ¨ ¨ b vk satisfying (1) and (2b) such that

xX ,v1 b ¨ ¨ ¨ b vky ‰ 0.

Now we set

Y :“ pV p1q, . . . , V pkqq ¨ diagpµ1, . . . , µr´1q ` ǫv1 b ¨ ¨ ¨ vk P Dpn, rq,
for a sufficiently small positive number ǫ. We have

‖A ´ Y‖ “ ‖X ´ ǫv1 b ¨ ¨ ¨ b vk‖ ă ‖X‖.

This contradicts the assumption that pV p1q, . . . , V pkq, pµ1, . . . , µr´1qq is a local minimizer of
problem (9). �

As a special case, we suppose that n1 “ ¨ ¨ ¨ “ nk “ n so (56) is written as

pr ´ 1q
´

kpn ´ r

2
q ` 1

¯

ă pn ´ r ` 1qk.

We set r ´ 1 “ p1 ´ αqn for α P r 1

n
, 1s, hence we have

p1 ´ αqn
ˆ

knp1 ` αq
2

` 1 ´ k

2

˙

ă αknk.

Therefore, to guarantee (56) in this case, it is sufficient to require

2nk´2

k
αk ` α2 ´ 1 ą 0. (57)

Corollary 5.7. If n1 “ ¨ ¨ ¨ “ nk “ n and

1 ď r ď
˜

1 ´
ˆ

k

2nk´2

˙ 1

k

¸

n ` 1,

then for a generic A P R
nˆ¨¨¨ˆn, any local minimizer of the problem (9) lies in Dpn, rq (or

equivalently Un,r). In particular, for any fixed k and r, there exists n0 such that whenever
n ě n0 and A P R

nˆ¨¨¨ˆn is generic, any local minimizer of problem (9) lies in Dpn, rq.

Proof. We observe that for any pk{2nk´2q1{k ď α ď 1, (57) and hence (56) is satisfied by
n1 “ ¨ ¨ ¨ “ nk “ n and

r “ p1 ´ αqn ` 1.

This implies that for

1 ď r ď
˜

1 ´
ˆ

k

2nk´2

˙ 1

k

¸

n ` 1,

any local minimizer of the problem (9) lies in Dpn, rq for a generic A. In particular, if k ě 3
is a fixed integer, then

lim
nÑ8

´

1 ´
`

k
2nk´2

˘
1

k

¯

n ` 1

n
“ 1.

This implies that there exists some integer n0 such that for a generic A and any n ě n0,
local minimizers of problem (9) must all lie in Dpn, rq. �
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If (56) is fulfilled, Proposition 5.6 implies that all local maximizers of (10) for a generic
tensor are in Dpn, rq. Recall from Theorem 3.13 that these local maximizers are finite. Thus,
we have the next corollary.

Corollary 5.8. Let n1, . . . , nk and r be positive integers satisfying(56). For a generic tensor
A, if Algorithm 4.1 converges to a local maximizer, then the truncation step in Algorithm 4.1
will not be executed when a suitable κ is chosen.

Combining Corollaries 5.5 and 5.8, we have the following conclusion.

Proposition 5.9. For almost all LROTA problems, there exist κ, ǫ and τ such that iAPD
with Substep 2 being replaced by Algorithm 5.2 reduces to APD after finitely many iterations.

6. Conclusions

In this paper, we propose an alternating polar decomposition algorithm with adaptive
proximal correction and truncation for approximating a given tensor by a low rank orthogo-
nally decomposable tensor. Without any assumption we prove that this algorithm has global
convergence and overall sublinear convergence with a sub-optimal explicit convergence rate.
For a generic tensor, this algorithm converges R-linearly without any further assumption.
For the first time, the convergence rate analysis for the problem of low rank orthogonal
tensor approximations is accomplished.

The discussion in Section 5 is all about local maximizers of problem (10). Both APD and
iAPD are based on the alternating minimization method [6], which is a variant of gradient
ascend. In general, such a method can only converge to a KKT point, including local min-
imizer, saddle point and local maximizer [5, 6]. However, if each saddle point of a function
has the strict saddle property, which is guaranteed if it is a nondegenerate critical point,
then with probability one, the gradient ascent method converges to a local maximizer [37].
Therefore, for a generic tensor, the proposed algorithm will return a strict local maximizer,
since each KKT point is nondegenerate and the objective function is monotonically increas-
ing. More theoretical investigations on this are interesting and important, which will be our
next project.
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Appendix A. Properties on Orthonormal Matrices

A.1. Polar decomposition. In this section, we will establish an error bound analysis for
the polar decomposition. For a positive semidefinite matrix H P Sn

`, there exists a unique
positive semidefinite matrix P P Sn

` such that P 2 “ H . In the literature, this matrix P

is called the square root of the matrix H and denoted as P “
?
H . If H “ UΣUT is the

eigenvalue decomposition of H , then we have
?
H “ U

?
ΣUT, where

?
Σ is the diagonal

matrix whose diagonal elements are square roots of those of Σ. The next result is classical,
which can be found in [22, 27].

Lemma A.1 (Polar Decomposition). Let A P R
mˆn with m ě n. Then there exist an

orthonormal matrix U P V pn,mq and a unique symmetric positive semidefinite matrix H P
Sn

` such that A “ UH and

U P argmaxtxQ,Ay : Q P V pn,mqu. (58)

Moreover, if A is of full rank, then the matrix U is uniquely determined and H is positive
definite.

The matrix decomposition A “ UH as in Lemma A.1 is called the polar decomposition of
the matrix A [22]. For convenience, the matrix U is referred as a polar orthonormal factor
matrix and the matrix H is the polar positive semidefinite factor matrix. The optimization
reformulation (58) comes from the approximation problem

min
QPV pn,mq

}B ´ QC}2

for two given matrices B and C of proper sizes. In the following, we give a global error
bound for this problem. To this end, the next lemma is useful.

Lemma A.2 (Error Reformulation). Let p,m, n be positive integers with m ě n and let
B P R

mˆp, C P R
nˆp be two given matrices. We set A :“ BCT P R

mˆn and suppose that
A “ WH is a polar decomposition of A. We have

}B ´ QC}2F ´ }B ´ WC}2F “ }W
?
H ´ Q

?
H}2F (59)

for any orthonormal matrix Q P V pn,mq.

Proof. We have

}B ´ QC}2F ´ }B ´ WC}2F “ 2xB,WC ´ QCy
“ 2xA,W ´ Qy
“ 2xWH,W ´ Qy
“ xWH,W y ´ 2xWH,Qy ` xQH,Qy
“ }W

?
H ´ Q

?
H}2F ,

where both the first and the fourth equalities follow from the fact that both Q and W are
in V pn,mq, and the last one is derived from the fact that H is symmetric and positive
semidefinite by Lemma A.1. �

Given an n ˆ n symmetric positive semidefintie matrix H , we can define a symmetric
bilinear form on R

mˆn by

xP,QyH :“ xPH,Qy (60)
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for all m ˆ n matrices P and Q. It can also induce a seminorm

}A}H :“
a

xA,AyH “ }A
?
H}F . (61)

In particular, if H is positive definite, then ‖¨‖H is a norm on R
mˆn. Thus, the error

estimation in (59) can be viewed as a distance estimation between W and Q with respect
to the distance induced by this norm. Moreover, if H is the identity matrix, then ‖¨‖H is
simply the Frobenius norm which induces the Euclidean distance on R

mˆn. By Lemma A.2
it is easy to see that the optimizer in (58) is unique whenever A is of full rank.

The following result establishes the error estimation with respect to the Euclidean distance.
Given a matrix A P R

mˆn, let σminpAq be the smallest singular value of A. If A is of full
rank, then σminpAq ą 0.

Theorem A.3 (Global Error Bound in Frobenius Norm). Let p,m, n be positive integers
with m ě n and let B P R

mˆp and C P R
nˆp be two given matrices. We set A :“ BCT P R

mˆn

and suppose that A is of full rank with the polar decomposition A “ WH. We have that

}B ´ QC}2F ´ }B ´ WC}2F ě σminpAq}W ´ Q}2F (62)

for any orthonormal matrix Q P V pn,mq.

Proof. We know that in this case
?
H ´

a

σminpAqI P Sn
` .

Therefore we may conclude that

}W
?
H ´ Q

?
H}2F “ }W ´ Q}2?

H

ě }W ´ Q}2?
σminpAqI

“ }W
a

σminpAqI ´ Q
a

σminpAqI}2F
“ σminpAq}W ´ Q}2F .

According to Lemma A.2, we can derive the desired inequality. �

Theorem A.3 is a refinement of Sun and Chen’s result (cf. [56, Theorem 4.1]), in which
the right hand side of (62) has an extra factor 1

4
.

A.2. Principal angles between subspaces. Given two linear subspaces U and V of di-
mension r in R

n, the principal angles tθi : i “ 1, . . . , ru between U and V and the associated
principal vectors tpui,viq : i “ 1, . . . , ru are defined recursively by

cospθiq “ xui,viy “ max
uPU, ru,u1,...,ui´1sPV pi,nq

"

max
vPV, rv,v1,...,vi´1sPV pi,nq

xu,vy
*

. (63)

The following result is standard, whose proof can be found in [22, Section 6.4.3].

Lemma A.4. For any orthonormal matrices U, V P V pr, nq of which subspaces spanned by
column vectors are U and V respectively, we have

σipUTV q “ cospθiq for all i “ 1, . . . , r, (64)

where θi’s are the principal angles between U and V, and σipUTV q is the i-th largest singular
value of the matrix UTV .
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Lemma A.5. For any orthonormal matrices U, V P V pr, nq, we have

xU, V y ď
r

ÿ

j“1

σjpUTV q. (65)

Proof. We recall from [22, pp. 331] that

min
QPOprq

}A ´ BQ}2F “
r

ÿ

j“1

pσjpAq2 ´ 2σjpBTAq ` σjpBq2q,

for any n ˆ r matrices A,B. In particular, if U, V P Vpr, nq then

σjpUq “ σjpV q “ 1 for all j “ 1, . . . , r, }U}2F “ }V }2F “ r.

This implies that

2r ´ 2
r

ÿ

j“1

σjpUTV q “ min
QPOprq

}U ´ V Q}2F ď }U ´ V }2F “ 2r ´ 2xU, V y,

and the desired inequality follows immediately. �

Lemma A.6. For any orthonormal matrices U, V P V pr, nq, we have

}UTV ´ I}2F ď }U ´ V }2F . (66)

Proof. We have

}UTV ´ I}2F “ r `
r

ÿ

i“1

cos2 θi ´ 2 trpUTV q ď 2r ´ 2 trpUTV q “ }U ´ V }2F ,

where the first equality follows from Lemma A.4. �

Let U
K be the orthogonal complement subspace of a given linear subspace U in R

n. A
useful fact about principal angles between two linear subspaces U and V and those between
U

K and V
K is stated as follows. The proof can be found in [31, Theorem 2.7].

Lemma A.7. Let U and V be two linear subspaces of the same dimension and let π
2

ě θs ě
¨ ¨ ¨ ě θ1 ą 0 be the nonzero principal angles between U and V. Then the nonzero principal
angles between U

K and V
K are π

2
ě θs ě ¨ ¨ ¨ ě θ1 ą 0.

The following result is for the general case, which might be of independent interests.

Lemma A.8. Let m ě n be positive integers and let V :“ rV1 V2s P Opmq with V1 P V pn,mq
and U P V pn,mq be two given orthonormal matrices. Then, there exists an orthonormal
matrix W P V pm ´ n,mq such that P :“ rU W s P Opmq and

}P ´ V }2F ď 2}U ´ V1}2F . (67)

Proof. By a simple computation, it is straightforward to verify that (67) is equivalent to

}W ´ V2}2F ď }U ´ V1}2F . (68)

To that end, we let U2 P V pm ´ n,mq be an orthonormal matrix such that rU U2s P Opmq.
Then, we have that the linear subspace U2 spanned by column vectors of U2 is the orthogonal
complement of U1, which is spanned by column vectors of U . Likewise, let V1 and V2 be
linear subspaces spanned by column vectors of V1 and V2 respectively.
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Let π
2

ě θs ě ¨ ¨ ¨ ě θ1 ą 0 be the nonzero principal angles between U2 and V2 for some
nonnegative integer s ď m ´ n. We have by Lemmas A.4, and A.5 that

xU2, V2y ď
m´n
ÿ

i“1

σipUT

2V2q “
s

ÿ

i“1

cospθiq ` pm ´ nq ´ s. (69)

Let Q P Opm ´ nq be a polar orthogonal factor matrix of the matrix UT

2
V2. It follows from

the property of polar decomposition that

xU2Q, V2y “
m´n
ÿ

i“1

σipUT

2V2q. (70)

On the other hand, nonzero principal angles between U1 and V1 are π
2

ě θs ě ¨ ¨ ¨ ě θ1 ą 0
by Lemma A.7. Therefore, by Lemmas A.4, and A.5, we have that

xU, V1y ď
n

ÿ

i“1

σipUTV1q “
s

ÿ

i“1

cospθiq ` n ´ s. (71)

In a conclusion, if we set W :“ U2Q, then we have the following:

}W ´ V2}2F “ 2pm ´ nq ´ 2xU2Q, V2y

“ 2pm ´ nq ´ 2
`

s
ÿ

i“1

cospθiq ` m ´ n ´ s
˘

“ 2n ´ 2
`

s
ÿ

i“1

cospθiq ` n ´ s
˘

ď 2n ´ 2xU, V1y
“ }U ´ V1}2F ,

where the second equality follows from (69) and (70) and the inequality follows from (71). �

Appendix B. Proofs of Technical Lemmas in Section 4

B.1. Proof of Lemma 4.2.

Proof. For each i P t0, . . . , k ´ 1u, we have

fpUi`1,rpsq ´ fpUi,rpsq “
r

ÿ

j“1

pλi`1

j,rpsq2 ´
r

ÿ

j“1

pλi
j,rpsq2

“
r

ÿ

j“1

pλi`1

j,rps ` λi
j,rpsqpλi`1

j,rps ´ λi
j,rpsq

“
r

ÿ

j“1

λi`1

j,rpspλi`1

j,rps ´ λi
j,rpsq `

r
ÿ

j“1

λi
j,rpspλi`1

j,rps ´ λi
j,rpsq. (72)

We first analyze the second summand in (72) and by considering the following two cases:

(1) If σ
pi`1q
r,rps ě ǫ, then there is no proximal step in Algorithm 4.1 and we have that

σminpSpi`1q
rps q “ σ

pi`1q
r,rps ě ǫ, where S

pi`1q
rps is the polar positive semidefinite factor matrix
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of V
pi`1q

rps Λ
pi`1q
rps obtained in (35). From (31), (32) and (33) we notice that

ppU pi`1q
rps qTV

pi`1q
rps Λ

pi`1q
rps qjj “ ppupi`1q

j,rps qTv
pi`1q
j,rps qλi

j,rps

“ ppupi`1q
j,rps qTAτi`1x

pi`1q
j,rps qλi

j,rps

“ Aτpxpi`2q
j,rps qλi

j,rps

“ λi`1

j,rpsλ
i
j,rps,

and similarly ppU pi`1q
rp´1sqTV

pi`1q
rps Λ

pi`1q
rps qjj “ λi

j,rpsλ
i
j,rps. Hence by Lemma A.2, we obtain

r
ÿ

j“1

λi
j,rpspλi`1

j,rps ´ λi
j,rpsq “ TrppU pi`1q

rps qTV
pi`1q

rps Λ
pi`1q
rps q ´ TrppU pi`1q

rp´1sqTV
pi`1q

rps Λ
pi`1q
rps q

“ 1

2

›

›pU pi`1q
rps ´ U

pi`1q
rp´1sq

b

S
pi`1q
rps

›

›

2

F

ě ǫ

2
}U pi`1q

rps ´ U
pi`1q
rp´1s}2F (73)

ě 0.

(2) If σ
pi`1q
r,rps ă ǫ, we consider the following matrix optimization problem

max xV pi`1q
rps Λ

pi`1q
rps , Uy ´ ǫ

2
}U ´ U

pi`1q
rp´1s}2F

s.t. U P V pr, ni`1q. (74)

Since U, U
pi`1q
rp´1s P V pr, ni`1q, we must have

ǫ

2
}U ´ U

pi`1q
rp´1s}2F “ ǫr ´ ǫxU pi`1q

rp´1s , Uy.

Thus, by Lemma A.1, a global maximizer of (74) is given by a polar orthonormal

factor matrix of the matrix V
pi`1q

rps Λ
pi`1q
rps ` ǫU

pi`1q
rp´1s . By Substep 2 of Algorithm 4.1,

U
pi`1q
rps is a polar orthonormal factor matrix of the matrix V

pi`1q
rps Λ

pi`1q
rps ` ǫU

pi`1q
rp´1s , and

hence a global maximizer of (74). Thus, by the optimality of U
pi`1q
rps for (74), we have

xV pi`1q
rps Λ

pi`1q
rps , U

pi`1q
rps y ´ ǫ

2
}U pi`1q

rps ´ U
pi`1q
rp´1s}2F ě xV pi`1q

rps Λ
pi`1q
rps , U

pi`1q
rp´1sy.

Therefore, the inequality (73) in case (1) also holds in this case.

Consequently, we have

0 ď
r

ÿ

j“1

λi
j,rpspλi`1

j,rps ´ λi
j,rpsq “

r
ÿ

j“1

λi`1

j,rpsλ
i
j,rps ´

r
ÿ

j“1

pλi
j,rpsq2, (75)

which together with Cauchy-Schwartz inequality implies that

`

r
ÿ

j“1

pλi
j,rpsq2

˘2 ď
`

r
ÿ

j“1

λi
j,rpsλ

i`1

j,rps
˘2 ď

r
ÿ

j“1

pλi
j,rpsq2

r
ÿ

j“1

pλi`1

j,rpsq2. (76)
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Since fpUr0sq ą 0, we conclude that fpU0,r1sq “ řr
j“1

pλ0

j,r1sq2 ą 0 and hence
řr

j“1
λ1

j,r1sλ
0

j,r1s ą
0 by (75). Thus, we conclude that

r
ÿ

j“1

λ1

j,r1sλ
0

j,r1s ď
r

ÿ

j“1

pλ1

j,r1sq2
řr

j“1
pλ0

j,r1sq2
řr

j“1
λ1

j,r1sλ
0

j,r1s
ď

r
ÿ

j“1

pλ1

j,r1sq2, (77)

where the first inequality follows from (76) and the second from (75). Combining (77) with
(72) and (73), we may obtain (40) for i “ 0 and p “ 1.

On the one hand, from (76) we obtain

0 ď
r

ÿ

j“1

pλi
j,rpsq2p

r
ÿ

j“1

pλi`1

j,rpsq2 ´
r

ÿ

j“1

pλi
j,rpsq2q.

Since
řr

j“1
pλi

j,rpsq2 ą 0 if there is no truncation, we must have

0 ď
r

ÿ

j“1

pλi`1

j,rpsq2 ´
r

ÿ

j“1

pλi
j,rpsq2 “ fpUi`1,rpsq ´ fpUi,rpsq,

i.e., the objective function f is monotonically increasing during the APD iteration as long
as there is no truncation. On the other hand, there are at most r truncations and hence the
total loss of f by the truncation is at most rκ2 ă fpUr0sq. Therefore, f is always positive and

according to (75), we may conclude that
řr

j“1
λi`1

j,rpsλ
i
j,rps ą 0 along iterations. By induction

on p, we obtain
r

ÿ

j“1

λi`1

j,rpsλ
i
j,rps ď

r
ÿ

j“1

pλi`1

j,rpsq2
řr

j“1
pλi

j,rpsq2
řr

j“1
λi`1

j,rpsλ
i
j,rps

ď
r

ÿ

j“1

pλi`1

j,rpsq2,

which together with (72) and (73), implies (40) for arbitrary nonnegative integer p. �

B.2. Proof for Lemma 4.5.

Proof. The subdifferentials of h can be partitioned as follows:

BhpUq “ p∇1fpUq ` BδV pr,n1qpU p1qqq ˆ ¨ ¨ ¨ ˆ p∇kfpUq ` BδV pr,nkqpU pkqqq. (78)

Following the notation of Algorithm 4.1, we set

xj :“ pup1q
j,rp`1s, . . . ,u

pkq
j,rp`1sq for all j “ 1, . . . , r,

where u
piq
j,rp`1s is the j-th column of the matrix U

piq
rp`1s for all i P t1, . . . , ku,

V piq :“
”

v
piq
1

. . . v
piq
r

ı

with v
piq
j :“ Aτipxjq for all j “ 1, . . . , r, (79)

for all i P t1, . . . , ku and

Λ :“ diagpλ1, . . . , λrq with λj :“ Aτpxjq. (80)

By (35) and (74), we have

V
piq

rp`1sΛ
piq
rp`1s ` αU

piq
rps “ U

piq
rp`1sS

piq
rp`1s, (81)

where α P t0, ǫu depending on whether or not there is a proximal correction. According to
(3) and (81), we have

´U
piq
rp`1s P BδV pr,niqpU

piq
rp`1sq, V

piq
rp`1sΛ

piq
rp`1s ` α

`

U
piq
rps

˘

P BδV pr,niqpU
piq
rp`1sq,
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which implies that V
piq

rp`1sΛ
piq
rp`1s ` α

`

U
piq
rps ´ U

piq
rp`1s

˘

P BδV pr,niqpU
piq
rp`1sq. If we take

W
piq
rp`1s :“ 2V piqΛ ´ 2V

piq
rp`1sΛ

piq
rp`1s ´ 2α

`

U
piq
rps ´ U

piq
rp`1s

˘

, (82)

then we have
W

piq
rp`1s P 2V piqΛ ` BδV pr,niqpU

piq
rp`1sq.

On the other hand,

1

2
}W piq

rp`1s}F

“ }V piqΛ ´ V
piq

rp`1sΛ
piq
rp`1s ´ α

`

U
piq
rps ´ U

piq
rp`1s

˘

}F
ď }V piqΛ ´ V

piq
rp`1sΛ}F ` }V piq

rp`1sΛ ´ V
piq

rp`1sΛ
piq
rp`1s}F ` α}U piq

rps ´ U
piq
rp`1s}F

ď }V piq ´ V
piq

rp`1s}F }Λ}F ` }V piq
rp`1s}F }Λ ´ Λ

piq
rp`1s}F ` α}U piq

rps ´ U
piq
rp`1s}F

ď }A}}Λ}F
`

r
ÿ

j“1

}τipxjq ´ τipxi
j,rp`1sq}

˘

` }V piq
rp`1s}F }A}

`

r
ÿ

j“1

}τpxjq ´ τpxi
j,rp`1sq}

˘

` α}U piq
rps ´ U

piq
rp`1s}F

ď
?
r}A}2

`

r
ÿ

j“1

k
ÿ

s“i`1

}upsq
j,rp`1s ´ u

psq
j,rps}

˘

`
?
r}A}2

`

r
ÿ

j“1

k
ÿ

s“i

}upsq
j,rp`1s ´ u

psq
j,rps}

˘

` α}U piq
rps ´ U

piq
rp`1s}F

ď p2r
?
r}A}2 ` ǫq}Urp`1s ´ Urps}F ,

where the third inequality follows from the fact that

V piq ´ V
piq

rp`1s “
“

Apτipx1q ´ τipxi
1,rp`1sqq . . . Apτipxrq ´ τipxi

r,rp`1sqq‰

,

and a similar formula for Λ ´ Λ
piq
rp`1s, the fourth follows from the fact that

|Aτpxq| ď }A}
for any vector x :“ px1, . . . ,xkq with }xi} “ 1 for all i “ 1, . . . , k and the last one follows
from α ď ǫ. This, together with (78), implies (43). �

B.3. Proof for Lemma 4.10.

Proof. We let

W
piq
rp`1s :“ V piqΛ ´ V

piq
rp`1sΛ

piq
rp`1s ´ α

`

U
piq
rps ´ U

piq
rp`1s

˘

,

where α P t0, ǫu depending on whether there is a proximal correction or not (cf. the proof
for Lemma 4.5). It follows from Lemma 4.5 that

}W piq
rp`1s}F ď γ0}U piq

rps ´ U
piq
rp`1s}F

for some constant γ0 ą 0. By Algorithm 4.1, we have

V
piq

rp`1sΛ
piq
rp`1s ` αU

piq
rps “ U

piq
rp`1sS

piq
rp`1s (83)
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where S
piq
rp`1s is a symmetric positive semidefinite matrix. Since U

piq
rp`1s P V pr, niq is an or-

thonormal matrix, we have

S
piq
rp`1s “ pU piq

rp`1sqT
`

V
piq

rp`1sΛ
piq
rp`1s ` αU

piq
rps

˘

“
`

V
piq

rp`1sΛ
piq
rp`1s ` αU

piq
rps

˘

T

U
piq
rp`1s, (84)

where the second equality follows from the symmetry of the matrix S
piq
rp`1s.

Consequently, we have

1

2
}∇ifpUrp`1sq ´ U

piq
rp`1sp∇ifpUrp`1sqqTU

piq
rp`1s}F

“ }V piqΛ ´ U
piq
rp`1spV piqΛqTU

piq
rp`1s}F

“ }W piq
rp`1s ` V

piq
rp`1sΛ

piq
rp`1s ` α

`

U
piq
rps ´ U

piq
rp`1s

˘

´ U
piq
rp`1spV piqΛqTU

piq
rp`1s}F

ď }W piq
rp`1s}F ` α}U piq

rps ´ U
piq
rp`1s}F ` }V piq

rp`1sΛ
piq
rp`1s ´ U

piq
rp`1spV piqΛqTU

piq
rp`1s}F

ď γ1}U piq
rps ´ U

piq
rp`1s}F ` }V piq

rp`1sΛ
piq
rp`1s ´ U

piq
rp`1spV piqΛqTU

piq
rp`1s}F , (85)

where γ1 “ γ0 ` ǫ. Next, we derive an estimation for the second summand of the right hand
side of (85). To do this, we notice that

}V piq
rp`1sΛ

piq
rp`1s ´ U

piq
rp`1spV piqΛqTU

piq
rp`1s}F

“ }U piq
rp`1sS

piq
rp`1s ´ αU

piq
rps ´ U

piq
rp`1spV piqΛqTU

piq
rp`1s}F

“ }U piq
rp`1s

`

V
piq

rp`1sΛ
piq
rp`1s ` αU

piq
rps

˘

T

U
piq
rp`1s ´ αU

piq
rps ´ U

piq
rp`1spV piqΛqTU

piq
rp`1s}F

ď }U piq
rp`1s

`

pV piq
rp`1sΛ

piq
rp`1sqT ´ pV piqΛqT

˘

U
piq
rp`1s}F ` α}U piq

rp`1spU
piq
rpsqTU

piq
rp`1s ´ U

piq
rps}F

ď }V piq
rp`1sΛ

piq
rp`1s ´ V piqΛ}F ` α}U piq

rp`1spU
piq
rpsqTU

piq
rp`1s ´ U

piq
rps}F

ď γ2}U piq
rp`1s ´ U

piq
rps}F , (86)

where γ2 ą 0 is some constant, the first equality follows from (83), the second from (84), the

second inequality2 follows from the fact that U
piq
rp`1s P V pr, nq and the last inequality from

the relation
}pU piq

rpsqTU
piq
rp`1s ´ I}F ď }U piq

rps ´ U
piq
rp`1s}F ,

which is obtained by Lemma A.6. The desired inequality can be derived easily from (85)
and (86).
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