Skip to main content
Log in

Bi-objective multistage stochastic linear programming

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We propose an algorithm for solving a class of bi-objective multistage stochastic linear programs. We show that the cost-to-go functions are saddle functions, and we exploit this structure, developing a new variant of the stochastic dual dynamic programming algorithm. Our algorithm is implemented in the open-source stochastic programming solver SDDP.jl. We apply our algorithm to a hydro-thermal scheduling problem using data from the Brazilian Interconnected Power System. We also propose and implement a computationally tractable heuristic for bi-objective stochastic convex programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Financ. 9(3), 203–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baucke, R., Downward, A., Zakeri, G.: A deterministic algorithm for solving multistage stochastic minimax dynamic programmes. Optimization Online (2018). http://www.optimization-online.org/DB_HTML/2018/02/6449.html

  3. Benders, J.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4, 238–252 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A Fresh Approach to Numerical Computing. SIAM Rev. 59(1), 65–98 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bland, R.G.: New finite pivoting rules for the simplex method. Math. Oper. Res. 2(2), 103–107 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boland, N., Charkhgard, H., Savelsbergh, M.: A criterion space search algorithm for biobjective integer programming: The balanced box method. INFORMS J. Comput. 27(4), 735–754 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cardona-Valdés, Y., Álvarez, A., Ozdemir, D.: A bi-objective supply chain design problem with uncertainty. Trans. Res. Part C: Emerg. Technol. 19(5), 821–832 (2011)

    Article  Google Scholar 

  8. Cohon, J.L., Church, R.L., Sheer, D.P.: Generating multiobjective trade-offs: An algorithm for bicriterion problems. Water Resour. Res. 15(5), 1001–1010 (1979)

    Article  Google Scholar 

  9. Dantzig, G.B.: Linear programming and extensions. Princeton University Press, Princeton, NJ (1963)

  10. Ding, L., Ahmed, S., Shapiro, A.: A Python package for multi-stage stochastic programming. Optimization, pp. 1–45 (2019). Available online: https://optimization-online.org/2019/05/7199/. Accessed 2 Aug 2022

  11. Downward, A., Dowson, O., Baucke, R.: Stochastic dual dynamic programming with stagewise-dependent objective uncertainty. Oper. Res. Lett. 48, 33–39 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dowson, O.: The policy graph decomposition of multistage stochastic programming problems. Networks 76, 3–23 (2020)

    Article  MathSciNet  Google Scholar 

  13. Dowson, O., Kapelevich, L.: SDDP.jl: a Julia package for stochastic dual dynamic programming. INFORMS J. Comput. 33(1), 27–33 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dowson, O., Morton, D., Pagnoncelli, B.: Partially observable multistage stochastic programming. Oper. Res. Lett. 48, 505–512 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dunning, I., Huchette, J., Lubin, M.: JuMP: A Modeling Language for Mathematical Optimization. SIAM Rev. 59(2), 295–320 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin; New York (2005)

    MATH  Google Scholar 

  17. Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22(3), 618–630 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  18. Girardeau, P., Leclère, V., Philpott, A.B.: On the Convergence of Decomposition Methods for Multistage Stochastic Convex Programs. Math. Oper. Res. 40(1), 130–145 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grimmett, G., Stirzaker, D.: Probability and Random Processes, 2nd edn. Oxford University Press, Oxford (1992)

    MATH  Google Scholar 

  20. Guigues, V.: Convergence Analysis of Sampling-Based Decomposition Methods for Risk-Averse Multistage Stochastic Convex Programs. SIAM J. Optim. 26(4), 2468–2494 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gutjahr, W.J., Pichler, A.: Stochastic multi-objective optimization: A survey on non-scalarizing methods. Ann. Oper. Res. 236(2), 475–499 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jacobs, J., Freeman, G., Grygier, J., Morton, D., Schultz, G., Staschus, K., Stedinger, J.: Socrates: a system for scheduling hydroelectric generation under uncertainty. Ann. Oper. Res. 59, 99–133 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mardan, E., Govindan, K., Mina, H., Gholami-Zanjani, S.M.: An accelerated Benders decomposition algorithm for a bi-objective green closed loop supply chain network design problem. J. Clean. Prod. 235, 1499–1514 (2019)

    Article  Google Scholar 

  24. Moradi, S., Raith, A., Ehrgott, M.: A bi-objective column generation algorithm for the multi-commodity minimum cost flow problem. Eur. J. Oper. Res. 244(2), 369–378 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pereira, M., Pinto, L.: Multi-stage stochastic optimization applied to energy planning. Math. Program. 52, 359–375 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pflug, G.C., Pichler, A.: Time-Consistent Decisions and Temporal Decomposition of Coherent Risk Functionals. Math. Oper. Res. 41(2), 682–699 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Philpott, A.: On the Marginal Value of Water for Hydroelectricity. In: Terlaky, T., Anjos, M.F., Ahmed, S. (eds.) Advances and Trends in Optimization with Engineering Applications, pp. 405–425. Society for Industrial and Applied Mathematics, Philadelphia, PA (2017)

    Chapter  Google Scholar 

  28. Philpott, A., de Matos, V., Finardi, E.: On Solving Multistage Stochastic Programs with Coherent Risk Measures. Oper. Res. 61(4), 957–970 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Philpott, A.B., Guan, Z.: On the convergence of sampling-based methods for multi-stage stochastic linear programs. Oper. Res. Lett. 36, 450–455 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rahmanniyay, F., Yu, A.J., Seif, J.: A multi-objective multi-stage stochastic model for project team formation under uncertainty in time requirements. Comput. Ind. Eng. 132, 153–165 (2019)

    Article  Google Scholar 

  31. Razmi, J., Zahedi-Anaraki, A.H., Zakerinia, M.S.: A bi-objective stochastic optimization model for reliable warehouse network redesign. Math. Comput. Model. 58(11–12), 1804–1813 (2013)

    Article  MATH  Google Scholar 

  32. Shapiro, A.: Analysis of stochastic dual dynamic programming method. Eur. J. Oper. Res. 209(1), 63–72 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shapiro, A., Tekaya, W., da Costa, J.P., Soares, M.P.: Risk neutral and risk averse Stochastic Dual Dynamic Programming method. Eur. J. Oper. Res. 224(2), 375–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Van Slyke, R.M., Wets, R.: L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17(4), 638–663 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wolfe, P.: A technique for resolving degeneracy in linear programming. J. Soc. Ind. Appl. Math. 11(2), 205–211 (1963)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported, in part, by Northwestern University’s Center for Optimization & Statistical Learning (OSL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Dowson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dowson, O., Morton, D.P. & Downward, A. Bi-objective multistage stochastic linear programming. Math. Program. 196, 907–933 (2022). https://doi.org/10.1007/s10107-022-01872-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-022-01872-x

Keywords

Mathematics Subject Classification

Navigation