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HOMOGENIZATION FOR POLYNOMIAL OPTIMIZATION WITH

UNBOUNDED SETS

LEI HUANG, JIAWANG NIE, AND YA-XIANG YUAN

Abstract. This paper considers polynomial optimization with unbounded
sets. We give a homogenization formulation and propose a hierarchy of Moment-
SOS relaxations to solve it. Under the assumptions that the feasible set is
closed at infinity and the ideal of homogenized equality constraining poly-
nomials is real radical, we show that this hierarchy of Moment-SOS relax-
ations has finite convergence, if some optimality conditions (i.e., the linear
independence constraint qualification, strict complementarity and second or-
der sufficient conditions) hold at every minimizer, including the one at infinity.
Moreover, we prove extended versions of Putinar-Vasilescu type Positivstellen-
satz for polynomials that are nonnegative on unbounded sets. The classical
Moment-SOS hierarchy with denominators is also studied. In particular, we
give a positive answer to a conjecture of Mai, Lasserre and Magron in their
recent work. Polynomial optimization and Homogenization and Moment-SOS
relaxations and Optimality conditions

1. Introduction

Consider the optimization problem

(1.1)






min f(x)
s .t . ci(x) = 0 (i ∈ E),

cj(x) ≥ 0 (j ∈ I),
where f(x), ci(x), cj(x) are polynomials in x := (x1, . . . , xn) ∈ Rn. The E and I
are disjoint labeling sets for equality and inequality constraining polynomials. Let
K denote the feasible set of (1.1) and let fmin denote the optimal value of (1.1).
This contains a broad class of important optimization problems, such as stability
numbers of graphs [20, 35] and optimization in quantum information theory [8].
We refer to [25, 26, 29] for related work about polynomial optimization.

The Moment-SOS hierarchy proposed by Lasserre [21] is efficient for solving
the polynomial optimization (1.1). Under the archimedeanness for constraining
polynomials (the set K must be compact for this case; see [21, 28, 46]), it yields a
sequence of convergent lower bounds for the minimum fmin. Later, it was shown in
[41] that the Moment-SOS hierarchy has finite convergence if in addition the linear
independence constraint qualification, the strict complementarity and second order
sufficient conditions hold at every minimizer.1 When the set K is compact, we
refer to the work [18, 19, 24, 52, 54]. For convex polynomial optimization, the
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1Throughout the paper, for convenience, a minimizer means a global minimizer, unless it is

otherwise specified for the meaning.
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Moment-SOS hierarchy has finite convergence under the strict convexity or sos-
convexity conditions [16, 23]. When the equality constraints give a finite set, the
Moment-SOS hierarchy has finite convergence, as shown in [22, 28, 40]. More
general introductions to polynomial optimization can be found in the books and
surveys [25, 26, 29, 30, 34, 51].

When the feasible set K is unbounded (the archimedeanness fails for this case),
the classical Moment-SOS hierarchy typically does not converge. For instance, this
is the case if the objective f is a nonnegative polynomial that is not a sum of
squares (SOS) and there are no constraints. There exists work on solving poly-
nomial optimization with unbounded sets. Based on Karush-Kuhn-Tucker (KKT)
conditions and Lagrange multipliers, there exist tight Moment-SOS relaxations for
solving (1.1), such as the work in [5, 36, 39, 43]. In [15], the authors proposed
Moment-SOS relaxations based on adding sublevel set constraints. The resulting
hierarchy of this type of relaxations is also convergent under the archimedeanness
for the new constraints. In the above mentioned work, it is assumed that the opti-
mal value of (1.1) is achieved. However, this is not always the case. For instance,
for f = x2

1 + (1 − x1x2)
2 and K = R2, the optimal value fmin = 0 is not achiev-

able at any feasible point. Interestingly, it was shown in [1] that checking whether
or not the optimal value is achievable is NP-hard. When the minimum fmin is
not achievable, we refer to the work [11, 12, 53] for such polynomial optimization
problems.

When the feasible set K is unbounded, Mai, Lasserre and Magron [32] recently
proposed a new hierarchy of Moment-SOS relaxations. Instead of solving (1.1)
directly, they considered the perturbation f + ǫ(1+‖x‖2)d0 for the objective, where
ǫ > 0, and d0 is the smallest integer such that 2d0 ≥ deg(f) + 1. They proved
the convergence to a neighborhood of fmin when it is achievable. The convergence
is related to Putinar-Vasilescu’s Positivstellensatz [47, 48]. The complexity for
this new hierarchy is studied in the recent work [31]. For the ideal case ǫ = 0,
they conjectured that their hierarchy has finite convergence under some standard
optimality conditions at each minimizer.

The polynomial optimization with unbounded sets is typically hard to solve.
There are some questions of high interests. For instance, can we get a hierarchy
of Moment-SOS relaxations that has finite convergence for almost all cases (i.e.,
for generic cases)? When the optimal value fmin is not achievable, can we get a
hierarchy of Moment-SOS relaxations that has finite convergence?

Contributions. This paper studies how to solve polynomial optimization with
unbounded sets. For a polynomial p(x) of degree ℓ, let p̃ denote its homogenization
in x̃ := (x0, x), i.e., p̃(x̃) = xℓ

0p(x/x0). We consider the following homogenization

K̃ ⊆ Rn+1 of K

(1.2) K̃ :=



x̃ ∈ R

n+1

∣∣∣∣∣∣

c̃i(x̃) = 0 (i ∈ E),
c̃j(x̃) ≥ 0 (j ∈ I),
‖x̃‖2 − 1 = 0, x0 ≥ 0



 .

Denote by c̃E (resp., c̃I) the equality (resp., inequality) constraining polynomial

tuple for K̃. Let Ideal[c̃E ]2k denote the 2kth degree truncation of the ideal of c̃E
and let QM[c̃I ]2k denote the 2kth degree truncation of the quadratic module of c̃I
(see Section 2.2 for the definition). Suppose the degree of f is d. For an order
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k ≥ ⌈d
2⌉, we consider the kth order relaxation for (1.1):

(1.3)

{
fk := max γ

s .t . f̃(x̃)− γxd
0 ∈ Ideal[c̃E ]2k +QM[c̃I ]2k.

When the set K is closed at infinity (see Definition 3.1), a scalar γ is a lower bound

of f on K if and only if f̃(x̃)−γxd
0 ≥ 0 on K̃. This is the motivation for considering

the relaxation (1.3).
In this paper, we consider the case that the feasible set K of (1.1) is unbounded.

Our new contributions are:

I. Our major results are to study conditions for the hierarchy of relaxations
(1.3) to have finite convergence. We prove that the finite convergence can
happen under some general assumptions, without assuming that f is pos-
itive at infinity on K (for such a case, the asymptotic convergence is then
guaranteed).

II. Assume that K is closed at infinity, the ideal Ideal[c̃E ] is real radical (see
Section 2.2 for the definition). When some optimality conditions (i.e., the
linear independence constraint qualification, strict complementarity and
second order sufficient conditions) hold at every minimizer of (1.1), in-
cluding the one at infinity, we show that the hierarchy of (1.3) has finite
convergence. In particular, the finite convergence neither assume that the
optimal value fmin is achievable nor assume that f is positive at infinity
on K. The proof uses some classical results in [41]. To the best of the
authors’ knowledge, this is the first work that proves the finite convergence
for polynomial optimization with unbounded sets.

III. We prove that classical optimality conditions for minimizers of (1.1) are
equivalent to those for the homogenized optimization problem (4.1). This
shows that the finite convergence of the hierarchy of (1.3) is actually de-
termined by optimality conditions for minimizers of (1.1). When the ideal
Ideal[c̃E ] is not real radical, we give a new hierarchy of Moment-SOS re-
laxations that also has finite convergence, under the same assumptions on
optimality conditions. We also study genericity properties of optimality
conditions. When the polynomials are generic, we show that optimality
conditions hold at every minimizer and there are no minimizers at infinity.

IV. We give extended versions of the Putinar-Vasilescu’s Positivstellensatz for
polynomials that are nonnegative on unbounded semialgebraic sets. When
the linear independence constraint qualification, strict complementarity and
second order sufficient conditions hold at every minimizer of the correspond-
ing optimization problem, we prove that a desired SOS type representation
with the denominator ‖x‖2k or (1 + ‖x‖2)k exists. The Putinar-Vasilescu’s
Positivstellensatz gives rise to another hierarchy of Moment-SOS relax-
ations for solving (1.1). This hierarchy is the same as the one given in
[32] for the case ǫ = 0. It was conjectured in [32] that this hierarchy has
finite convergence when some standard optimality conditions hold at every
minimizer. We prove that this conjecture is true, by applying our finite
convergence theory for the hierarchy of (1.3).

We would like to make the following comparisons with prior existing work for
solving polynomial optimization with unbounded sets.
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• By using KKT conditions and Jacobian representations, a tight hierarchy
of Moment-SOS relaxations is given in [39]. By using Lagrange multiplier
expressions, an other tight hierarchy of Moment-SOS relaxations is given in
[43]. Both methods as in [39, 43] assume that the tuple of constraining poly-
nomials is nonsingular and the optimal value is achievable. In particular,
the method as in [39] requires to use defining equations for determinantal
varieties. In [43], Lagrange multiplier expressions are required. For general
polynomial constraints, it may not be convenient to formulate the Moment-
SOS relaxations as in [39, 43]. Moreover, when the optimal value fmin is
not achievable, the methods as in [39, 43] are not applicable.

• In the recent work by Jeyakumar et al. [15], a sublevel set constraint
c−f(x) ≥ 0 is posed as a new constraint. When the quadratic module gen-
erated for new constraints is archimedean, it produces an asymptotically
convergent hierarchy of Moment-SOS relaxations. When the archimedean-
ness fails, the asymptotic convergence is not guaranteed. Moreover, finding
such a c is typically difficult for constraint cases even if it exists and no
finite convergence results are known for adding such new constraints.

• When the optimal value fmin is not achievable, there exist convergent hier-
archies of SOS relaxations in the work [11, 12, 53], under certain technical
assumptions. They are based on gradient tentacles [53] or truncated tan-
gent varieties [11, 12]. Only the asymptotic convergence is shown for these
hierarchies, under certain assumptions. There are no finite convergence
results when the optimal value fmin is not achievable.

• The recent work [32] of Mai, Lasserre and Magron considers the perturba-
tion f + ǫ(1 + ‖x‖2)d0 , with 2d0 ≥ deg(f) + 1, for the objective. When
ǫ > 0 is small and fmin is achievable, they give a hierarchy of Moment-SOS
relaxations that converges to a neighborhood of the optimal value fmin.
Finite convergence is not known for this hierarchy. For the case ǫ = 0,
the authors conjectured that this hierarchy has finite convergence, under
some standard optimality conditions. We give a positive answer to this
conjecture in Section 6.

This paper is organized as follows. Section 2 reviews some basics about opti-
mality conditions and polynomial optimization. Section 3 gives the new hierarchy
of relaxations and presents some asymptotic convergence results. In Section 4, we
prove that the proposed hierarchy of relaxations has finite convergence when some
optimality conditions hold at every minimizer, including the one at infinity. In
Section 5, we prove extended versions of the Putinar-Vasilescu’s Positivstellensatz
for polynomials that are nonnegative on unbounded semialgebraic sets. Section 6
studies the Moment-SOS hierarchy with denominators. Section 7 presents some
numerical experiments. Section 8 draws conclusions and make some discussions.

2. Preliminaries

Notation. The symbol N (resp., R, C) denotes the set of nonnegative integers
(resp., real numbers, complex numbers). For x := (x1, . . . , xn) and α = (α1, . . . , αn),
denote xα := xα1

1 · · ·xαn
n and |α| := α1 + · · · + αn. For a degree d, let [x]d denote

the vector of all monomials in x and whose degrees are at most d, ordered in the
graded alphabetical ordering, i.e.,

[x]Td = [1, x1, x2, . . . , x
2
1, x1x2, . . . , x

d
1, x

d−1
1 x2, . . . , x

d
n].
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Denote the power set

N
n
d := {α ∈ N

n : |α| ≤ d} .
Let R[x] := R[x1, . . . , xn] denote the ring of polynomials in x with real coefficients,
and R[x]d is the subset of polynomials in R[x] with degrees at most d. For a
polynomial p, deg(p) denotes its total degree, and p̃ denotes its homogenization,

i.e., p̃(x̃) = x
deg(p)
0 p(x/x0) for x̃ := (x0, x1, . . . , xn). A homogeneous polynomial is

said to be a form. A form p is positive definite if p(x) > 0 for all nonzero x ∈ Rn.
For a general polynomial p ∈ R[x], p(i) denotes the homogeneous part of the ith
highest degree for p. For t ∈ R, ⌈t⌉ denotes the smallest integer greater than or
equal to t. For a function p in x, ∇p (resp., ∇2p) denotes its gradient (resp.,
Hessian) with respect to x. If x is a subvector of its variables, then ∇xp denotes its
gradient with respect to x. If x, y are two subvectors of its variables, then denote
the Hessian with respect to x = (xi1 , . . . , xiℓ1

), y = (xj1 , . . . , xℓ2) by ∇2
x,yp, i.e.,

∇2
x,yp =

(
∇2

xit
yik

p
)

t=1,...,ℓ1,k=1,...,ℓ2
.

For a matrix A, AT denotes its transpose. A symmetric matrix X � 0 if X is
positive semidefinite. For a vector v, ‖v‖ denotes the standard Euclidean norm.
For a set T ⊆ Rn, let cl(T ) be the closure of T . A property is said to be generic
for a vector space V if it holds in an open dense set of V .

2.1. Optimality conditions. We review some basic theory for nonlinear program-
ming. Let x∗ be a local minimizer of (1.1). Denote the label set of active constraints
at x∗

(2.1) J(x∗) := {i ∈ E ∪ I : ci(x
∗) = 0} .

The linear independence constraint qualification condition (LICQC) is said to hold
at x∗ if the gradient set {∇ci(x

∗)}i∈J(x∗) is linearly independent. When the LICQC
holds at x∗, there exist Lagrange multipliers λi (i ∈ E ∪ I) such that

(2.2)
∇f(x∗) =

∑
i∈E∪I λi∇ci(x

∗),
λj ≥ 0 (j ∈ I), λjcj(x

∗) = 0 (j ∈ I).

The above is called the first order optimality condition (FOOC). Moreover, if λj +
cj(x

∗) > 0 for all j ∈ I, then the strict complementarity condition (SCC) is said
to hold at x∗. For the above Lagrange multipliers, the Lagrange function is

L (x) := f(x)−
∑

i∈E∪I
λici(x).

The subspace of the gradients of the active constraints is denoted as

(2.3) V (x∗) := span{∇ci(x
∗), i ∈ J(x∗)}.

The orthogonal complement of V (x∗) is denoted as V (x∗)⊥. Under the LICQC,
the second order necessary condition (SONC) holds at x∗, i.e.,

(2.4) vT∇2
(
L (x∗)

)
v ≥ 0, ∀ v ∈ V (x∗)⊥.

The second order sufficient condition (SOSC) is said to hold at x∗ if

(2.5) vT∇2
(
L (x∗)

)
v > 0, ∀ 0 6= v ∈ V (x∗)⊥.
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If the FOOC, SCC and SOSC hold at x∗, then x∗ is a strict local minimizer. We
refer to [4, 55] for more details about optimality conditions.

2.2. Some basics for polynomial optimization. We review some basics in real
algebraic geometry and polynomial optimization. We refer to [25, 29, 51] for more
details.

A subset I ⊆ R[x] is called an ideal of R[x] if I · R[x] ⊆ R[x], I + I ⊆ I. For a
polynomial tuple h := (h1, . . . , hm), Ideal[h] denotes the ideal generated by h, i.e.,

Ideal[h] = h1 · R[x] + · · ·+ hm · R[x].
For a degree k, the kth degree truncation of Ideal[h] is

Ideal[h]k = h1 · R[x]k−deg(h1) + · · ·+ hm · R[x]k−deg(hm).

Its real variety is defined as

VR(h) = {x ∈ R
n | h1(x) = · · · = hm(x) = 0}.

We say Ideal[h] is real radical if Ideal[h] = Ideal[VR(h)], where Ideal[VR(h)] denotes
the set of all polynomials vanishing on VR(h). A polynomial p is said to be a sum
of squares (SOS) if p = p21 + · · · + p2t for p1, . . . , pt ∈ R[x]. The set of all SOS
polynomials in x is denoted as Σ[x]. For an even degree k, denote the truncation

Σ[x]k := Σ[x] ∩R[x]k.

For a polynomial tuple g = (g1, . . . , gℓ), the quadratic module generated by g is

(2.6) QM[g] := Σ[x] + g1 · Σ[x] + · · ·+ gℓ · Σ[x].
Similarly, for an even degree k, the kth degree truncation of QM[g] is

(2.7) QM[g]k = Σ[x]k + g1 · Σ[x]k−2⌈deg(g1)/2⌉ + · · ·+ gℓ · Σ[x]k−2⌈deg(gℓ)/2⌉.

The sum Ideal[h] + QM[g] is said to be archimedean if there exists R > 0 such
that R − ‖x‖2 ∈ Ideal[h] + QM[g]. If it is archimedean, then the set

S := {x ∈ R
n | h(x) = 0, g(x) ≥ 0}

must be compact. Clearly, if p ∈ Ideal[h] + QM[g], then p ≥ 0 on S while the
converse is not always true. However, if p is positive on S and Ideal[h] + QM[g]
is archimedean, we have p ∈ Ideal[h] + QM[g]. This conclusion is referred to as
Putinar’s Positivstellensatz.

Theorem 2.1 ([46]). Suppose Ideal[h] + QM[g] is archimedean. If a polynomial
p > 0 on S, then p ∈ Ideal[h] +QM[g].

For an integer k > 0, let RN
n
2k denote the space of all real vectors that are labeled

by α ∈ Nn
2k. Each y ∈ RN

n
2k is labeled as

y = (yα)α∈Nn
2k
.

Such y is called a truncated multi-sequence (tms) of degree 2k. For a polynomial
p =

∑
|α|≤2k pαx

α ∈ R[x]2k, define the bilinear operation

(2.8) 〈p, y〉 =
∑

|α|≤2k

pαyα.
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For given p, 〈p, y〉 is a linear function in y. For the degree t := k − ⌈deg(p)/2⌉, the
localizing matrix L

(k)
p [y] is a symmetric linear matrix function in y such that

(2.9) qT
(
L(k)
p [y]

)
q = 〈p(qT [x]t)2, y〉

for all real vector q ∈ RN
n
t . In particular, if p = 1 is the constant one polynomial,

then L
(k)
1 [y] is called a moment matrix, for which we denote as

Mk[y] := L
(k)
1 [y].

Localizing matrices are quite useful for solving polynomial and tensor optimization
problems [7, 13, 25, 29, 42, 44].

3. Moment-SOS relaxations for the homogenization

In this section, we give a hierarchy of Moment-SOS relaxations based on the
homogenization of (1.1) and study its properties. Let x̃ := (x0, x). For a polynomial
p ∈ R[x], let p̃(x̃) denote the homogenization of p. For the feasible set K as in (1.1),
denote the sets

(3.1)

K̃h :=




x̃

∣∣∣∣∣∣

c̃i(x̃) = 0 (i ∈ E),
c̃j(x̃) ≥ 0 (j ∈ I),
x0 ≥ 0




 ,

K̃c := K̃h ∩ {x0 > 0},
K̃ := K̃h ∩ {x2

0 + xTx = 1}.

Define the perspective projection map ϕ as

(3.2) ϕ :
{
(x0, x) ∈ R

n+1 | x0 > 0, x2
0 + xTx = 1

}
→ R

n, (x0, x) 7→
x

x0
.

The map ϕ gives a one-to-one correspondence between K̃ ∩ {x0 > 0} and K.

The set K̃c only depends on the geometry of K, while K̃h and K̃ depend on the
description polynomials for K. Throughout the paper, we assume their description
polynomials are as in (1.1). The following is a useful definition for homogenization.

Definition 3.1 ([37]). The set K is closed at infinity (∞) if cl(K̃c) = K̃h.

The above definition was introduced in [37] for studying the boundary of the cone
of polynomials nonnegative on K. The following is a basic property for closedness
at ∞.

Lemma 3.2. For f ∈ R[x], we have f ≥ 0 on K if and only if f̃ ≥ 0 on cl(K̃c).

Moreover, when K is closed at ∞, f ≥ 0 on K if and only if f̃ ≥ 0 on K̃.

Being closed at ∞ is a generic property for semialgebraic sets (see [10]). We re-
mark that the closedness at ∞ may depend on the choice of description polynomials
for K. For instance, the following two sets

S1 = {(x1, x2) ∈ R
2 : x1 − x2

2 ≥ 0}, S2 = {(x1, x2) ∈ R
2 : x1 − x2

2 ≥ 0, x1 ≥ 0}
are the same. However, for their description polynomials, the set S2 is closed at

∞ while S1 is not, since (0,−1, 0) ∈ S̃h
1 \cl(S̃c

1). Throughout the paper, when we
mention K is closed at ∞, it means that their description polynomials as in (1.1)
are used.
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In view of the minimum value, the optimization (1.1) is equivalent to

(3.3)

{
max γ
s .t . f(x)− γ ≥ 0 on K.

Let d := deg(f). When K is closed at ∞, one has f − γ ≥ 0 on K if and only if

f̃(x̃)− γxd
0 ≥ 0 on K̃. Therefore, (3.3) is equivalent to

(3.4)

{
max γ

s .t . f̃(x̃)− γxd
0 ≥ 0 on K̃.

For convenience of notation, denote the polynomial sets

(3.5) c̃E :=
{
c̃i(x̃)

}
i∈E ∪ {‖x̃‖2 − 1}, c̃I :=

{
c̃j(x̃)

}
j∈I ∪ {x0}.

Note that K̃ is compact and Ideal[c̃E ] + QM[c̃I ] is archimedean for all K.
We apply Moment-SOS relaxations to solve (3.4). For an order k ≥ ⌈d

2⌉, the kth
order SOS relaxation for (3.4) is

(3.6)

{
max γ

s .t . f̃(x̃)− γxd
0 ∈ Ideal[c̃E ]2k +QM[c̃I ]2k.

The dual optimization of (3.6) is the kth order moment relaxation

(3.7)





min 〈f̃ , y〉
s .t . L

(k)
p [y] = 0 (p ∈ c̃E),

L
(k)
q [y] � 0 (q ∈ c̃I),

Mk[y] � 0,

〈xd
0 , y〉 = 1, y ∈ RN

n+1

2k .

Let fk and f ′
k denote the optimal values of (3.6), (3.7) respectively. As k goes

to infinity, the sequence of the relaxations (3.6)-(3.7) is called the homogenized
hierarchy of Moment-SOS relaxations for solving (1.1).

3.1. Basic properties. When K is closed at ∞, the optimal values of (3.3) and
(3.4) are the same. This is a basic property of homogenization. The following is
implied by Lemma 3.2.

Proposition 3.3. If K is closed at ∞, then the optimal values of (3.3) and (3.4)
are the same.

When the degrees of f , cj (j ∈ I) are all even, the constraint x0 ≥ 0 is redundant
for homogenization. Consider the optimization problem

(3.8)

{
max γ

s .t . f̃(x̃)− γxd
0 ≥ 0 on K̃e,

where the set K̃e is

(3.9) K̃e :=



x̃ ∈ R

n+1

∣∣∣∣∣∣

c̃i(x̃) = 0 (i ∈ E),
c̃j(x̃) ≥ 0 (j ∈ I),
x2
0 + xTx = 1



 .

SupposeK is closed at∞ and f ≥ 0 onK. By Lemma 3.2, we have f̃(x̃) ≥ 0 for x̃ =

(x0, x) ∈ K̃e with x0 ≥ 0. For x̃ ∈ K̃e with x0 < 0, we have c̃i(x̃) = (x0)
deg(ci)ci(

x
x0
)

for each i ∈ E ∪I. This implies that x
x0

∈ K and f̃(x̃) = xd
0f(

x
x0
) ≥ 0 for all x0 < 0,

when the degrees of f , cj (j ∈ I) are even. Thus, the following holds.
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Proposition 3.4. If the set K is closed at ∞ and the degrees of f , cj (j ∈ I) are
even, then the optimal values of (3.3) and (3.8) are the same.

We remark that if one of f and cj (j ∈ I) has an odd degree, then (3.3) and
(3.8) may not have the same optimal value. For instance, consider the optimization

min x s .t . 1− x2 ≥ 0, x ∈ R.

The minimum value fmin = −1 and K̃e = {x2
0 ≥ x2, x2

0 + x2 = 1}. However, the
optimal value of (3.8) is −∞, since there is no scalar γ such that x − γx0 ≥ 0 on

K̃e.
Suppose the optimal value fmin > −∞. A point x∗ ∈ K is a minimizer of (1.1)

if and only if f(x∗)− fmin = 0, which is equivalent to

(3.10) f̃(x̃∗)− fmin · (x̃∗
0)

d = 0

for the point x̃∗ := (1 + ‖x∗‖2)− 1
2 (1, x∗). By the perspective projection ϕ as in

(3.2), it is easy to see there exists a one-to-one correspondence between minimizers

of (1.1) and feasible points of (3.10) with x̃ = (x0, x) ∈ K̃, x0 > 0. However, the
system (3.10) may have feasible points of the form x̃∗ = (0, u). For such a case, it
does not give a minimizer of (1.1).

Definition 3.5. A point x∗ is said to be a minimizer at infinity for (1.1) if x̃∗ =

(0, x∗) satisfies (3.10) and x̃∗ ∈ K̃.

Recall that for a polynomial p, p(1) denotes the homogeneous part of the highest
degree for p. For convenience, denote the set

(3.11) K(1) :=




x ∈ R

n

∣∣∣∣∣∣∣

c
(1)
i (x) = 0 (i ∈ E),
c
(1)
j (x) ≥ 0 (j ∈ I),
‖x‖2 − 1 = 0





.

The following is a basic property of homogenization.

Theorem 3.6. Suppose the minimum value fmin > −∞. Then, we have:

(i) A point x∗ is a minimizer at ∞ for (1.1) if and only if f (1)(x∗) = 0 and
x∗ ∈ K(1).

(ii) If the minimum value fmin is not achievable for (1.1), then (1.1) has a
minimizer at ∞.

(iii) Suppose K is closed at ∞. Then the form f (1) ≥ 0 on K(1). In particular,
if f (1) > 0 on K(1), then there are no minimizers at ∞.

Proof. (i) For x̃∗ := (0, x∗), note that c̃i(x̃
∗) = c

(1)
i (x∗) for all i. So, x̃∗ ∈ K̃ if and

only if x∗ ∈ K(1). Since fmin > −∞, one can see that

0 = f̃(x̃∗)− fmin · (x̃∗
0)

d = f (1)(x∗).

So the conclusion is true.
(ii) Since the optimal value is not achievable, the set K is unbounded and there

is a sequence {x(k)}∞k=1 ⊆ K such that f(x(k)) → fmin and ‖x(k)‖ → ∞. Let

y(k) := x(k)/‖x(k)‖ be the normalization. Without loss of generality, one can further
assume y(k) → y∗. Clearly, ‖y∗‖ = 1, and

f (1)(y∗) = lim
k→∞

f (1)(y(k)) = lim
k→∞

f(x(k))/‖x(k)‖d = 0.
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Similarly, one can show that

c
(1)
i (y∗) = 0 (i ∈ E), c

(1)
i (y∗) ≥ 0 (j ∈ I).

So y∗ ∈ K(1) and y∗ is a minimizer at ∞, by the conclusion in item (i).
(iii) If K(1) = ∅, the conclusion is clearly true. We consider the case that

K(1) 6= ∅. For each u ∈ K(1), we have ũ := (0, u) ∈ K̃h. Since K is closed at ∞,

there exists a sequence of ũ(k) = (u
(k)
0 , u(k)) ∈ K̃c such that ũ(k) → ũ and each

u
(k)
0 > 0. Note that u(k)/u

(k)
0 ∈ K and

f̃(ũ(k))− fmin · (u(k)
0 )d = (u

(k)
0 )d(f(u(k)/u

(k)
0 )− fmin) ≥ 0.

Letting k → ∞, we get f (1)(u) ≥ 0 for every u ∈ K(1), hence f (1) ≥ 0 on K(1).
When the form f (1) > 0 on K(1), there are no minimizers at ∞. This is implied

by the item (i). �

3.2. Asymptotic convergence. The asymptotic convergence of the Moment-SOS
hierarchy of (3.6)-(3.7) can be shown under the following condition.

Definition 3.7. A polynomial p is said to be positive at ∞ on K if its highest
degree homogeneous part p(1) > 0 on K(1).

This condition has appeared in [6, 33] to study different properties of nonnegative
polynomials on unbounded sets. If the objective f is positive at ∞, then f is
coercive on K, i.e., for every value ϑ ∈ R, the sublevel set {x ∈ K : f(x) ≤ ϑ} is
compact. This is shown in the following lemma.

Lemma 3.8. If f is positive at ∞ on K, then f is coercive on K.

Proof. When K is compact, the conclusion is clearly true. Consider the case that
K is unbounded. Suppose otherwise f was not coercive on K, then there exist a
value ϑ and a sequence {u(k)}∞k=1 ⊆ K such that

‖u(k)‖ → ∞, f(u(k)) ≤ ϑ for all k.

Let ũ(k) := (1, u(k))/
√
1 + ‖uk‖2, then ũ(k) ∈ K̃ and ‖ũ(k)‖ = 1 for all k. Without

loss of generality, we can further assume that ũ(k) → ũ∗ := (0, u∗) ∈ K̃ as k → ∞.
Note that ‖u∗‖ = 1, and

f (1)(u∗) = f̃(ũ∗) = lim
k→∞

f̃(ũ(k)) = lim
k→∞

f(u(k))
√
1 + ‖u(k)‖2d

≤ 0.

One can similarly show that c
(1)
i (u∗) = 0 for every i ∈ E and c

(1)
j (u∗) ≥ 0 for every

j ∈ I. Hence, we get u∗ ∈ K(1) and f (1)(u∗) ≤ 0, a contradiction to the positivity
of f at ∞. So f must be coercive on K. �

We remark that if f is coercive on K, it may not be positive at ∞ on K. For
instance, the polynomial f = x4

1 + x2
2 is not positive at ∞ for K = R2, but it

is coercive. It is typically a hard question to check coercivity, as shown in [1].
Coercivity of polynomials is also studied in [2, 15]. The coercivity is sufficient but
not necessary for the optimal value to be achievable.

When f is positive at ∞ on K, the hierarchy of relaxations (3.6) has asymptotic
convergence. This is shown as follows.
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Theorem 3.9. If f is positive at ∞ on K, then the optimization (1.1) achieves
the minimum value and fk → fmin as k → ∞.

Proof. Since f is positive at ∞ on K, Lemma 3.8 implies that f is coercive on K,
so (1.1) must achieve its minimum value fmin > −∞ and it has minimizers. For

every scalar γ < fmin, we show that f̃(ũ) − γud
0 > 0 for all ũ := (u0, u) ∈ K̃. If

u0 = 0, then u ∈ K(1) and f̃(ũ) = f (1)(u) > 0, since f is positive at ∞ on K. If
u0 > 0, then u/u0 ∈ K and

f̃(ũ)− γ(u0)
d = ud

0(f(u/u0)− γ) > 0.

Note that Ideal[c̃E ]+QM[c̃I ] is archimedean, due to the sphere constraint x2
0+xTx =

1. By Theorem 2.1, we have f̃(x̃) − γxd
0 ∈ Ideal[c̃E ] + QM[c̃I ]. Thus, when k is

sufficiently large, we get f̃(x̃) − γxd
0 ∈ Ideal[c̃E ]2k + QM[c̃I ]2k. This is true for

every γ < fmin. On the another hand, if γ is feasible for (3.6), we must have

f̃(x̃)− γxd
0 ≥ 0 on K̃, which implies that f − γ ≥ 0 on K and hence γ ≤ fmin. This

shows that fk → fmin as k → ∞. �

The following is an example for the hierarchy of (3.6)-(3.7).

Example 3.10. Consider the optimization problem
{

min x1 + x2

s .t . x3
1 + x2 + 1 ≥ 0, x3

2 − x1 + 1 ≥ 0.

The feasible set K is unbounded. One can check that the minimum value and the
unique minimizer are respectively

fmin = −1− 2
√
3

9
, x∗ = (−

√
3

3
,−1 +

√
3

9
).

Note that f (1) = x1 + x2 and

K(1) = {x3
1 ≥ 0, x3

2 ≥ 0, x2
1 + x2

2 = 1}.
The form f (1) is positive on K(1). The hierarchy of (3.6)-(3.7) has the asymptotic
convergence. Interestingly, it also has finite convergence. This can be implied by
Theorem 4.3.

4. Optimality conditions and finite convergence

Optimality conditions are closely related to finite convergence of the classical
Moment-SOS hierarchy in [21]. Under the archimedeanness for constraining poly-
nomials, the Moment-SOS hierarchy has finite convergence when the linear indepen-
dence constraint qualification, strict complementarity and second order sufficient
conditions hold at every minimizer. This is shown in [41]. When the feasible set K
is unbounded, the above conclusion may not hold. However, we can prove similar
conclusions for the homogenized hierarchy of relaxations (3.6)-(3.7).

Recall that fk is the optimal value of the relaxation (3.6) for the relaxation
order k. The hierarchy of (3.6)-(3.7) is said to have finite convergence or be tight
if fk = fmin for all k big enough. To guarantee the finite convergence, we assume
that K is closed at ∞, Ideal[c̃E ] is real radical, the LICQC, SCC and SOSC hold at
every minimizer, including the one at infinity. However, the set K is not assumed
to be bounded and we do not assume the optimal value of (1.1) is achievable.
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We consider the homogenized optimization problem (note x̃ = (x0, x))

(4.1)






min F (x̃) := f̃(x̃)− fmin · xd
0

s .t . c̃i(x̃) = 0 (i ∈ E),
x2
0 + ‖x‖2 − 1 = 0,

c̃j(x̃) ≥ 0 (j ∈ I),
x0 ≥ 0.

Since there is the sphere constraint, the above optimization must have minimizers.

Lemma 4.1. If K is closed at ∞ and fmin > −∞, the minimum value of (4.1) is
0.

Proof. Since K is closed at ∞, we know F (x̃) ≥ 0 on K̃, by Lemma 3.2. If fmin

is achievable at a minimizer x∗ of (1.1), then x̃∗ := (1 + ‖x∗‖2)− 1
2 (1, x∗) ∈ K̃ and

F (x̃∗) = 0. If fmin is not achievable, then (1.1) has a minimizer at ∞, say u∗, by

Theorem 3.6. For the point ũ∗ := (0, u∗), we have F (ũ∗) = 0 and ũ∗ ∈ K̃. So the
minimum value of (4.1) is 0. �

Since the minimum value is 0, a point ũ is a minimizer of (4.1) if and only if

F (ũ) = 0 and ũ ∈ K̃. Suppose ũ = (u0, u) is a minimizer of (4.1). If u0 > 0, then
u/u0 is a minimizer of (1.1). If u0 = 0, then u is a minimizer at ∞ for (1.1). For
the case u0 > 0, we call ũ a regular minimizer of (4.1). For the case u0 = 0, we call
ũ a minimizer at infinity of (4.1). Recall the optimality conditions LICQC, SCC

and SOSC as in Subsection 2.1. Note that K̃ is always compact. The following is
the finite convergence result based on optimality conditions for the homogenized
optimization problem (4.1), which follows from [41].

Lemma 4.2. Assume K is closed at ∞ and Ideal[c̃E ] is real radical. If the LICQC,
SCC and SOSC hold at every minimizer of (4.1), then the hierarchy of relaxations
(3.6)-(3.7) is tight, i.e., there exists k0 ∈ N such that

fk = f ′
k = fmin for all k ≥ k0.

Proof. Note that Ideal[c̃E ] +QM[c̃I ] is archimedean. By Theorem 1.1 of [41], there
exists σ ∈ QM[c̃I ] such that

f̃ − fminx
d
0 ≡ σ mod Ideal[VR(c̃E)],

Since the ideal Ideal[c̃E ] is real radical, there exists φ ∈ Ideal[c̃E ] such that

f̃ − fminx
d
0 = φ+ σ.

This implies that fk = f ′
k = fmin for all k big enough. �

In Lemma 4.2, optimality conditions are stated for the homogenized optimization
problem (4.1). Interestingly, the optimality conditions at regular minimizers for
(4.1) are equivalent to those for (1.1). The equivalence will be shown in the following
subsections (see Theorem 4.4). Therefore, the finite convergence result can be
stated under the optimality conditions of (1.1). For a minimizer at infinity x∗, we
say the LICQC, SCC and SOSC hold at x∗ if they hold for (4.1) at (0, x∗). The
following is the main result about the finite convergence.

Theorem 4.3. Assume K is closed at ∞ and the ideal Ideal[c̃E ] is real radical. If
the LICQC, SCC and SOSC hold at every minimizer of (1.1), including the one at
infinity, then the hierarchy of relaxations (3.6)-(3.7) is tight, i.e., fk = f ′

k = fmin

for all k big enough.
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Proof. Since K is closed at ∞, we know f̃ − fminx
d
0 ≥ 0 on K̃, by Lemma 3.2. Let

x̃∗ = (x∗
0, x

∗) ∈ K̃ be a minimizer of (4.1). If x∗
0 > 0, then x∗

x∗
0

is a minimizer of

(1.1). Since the LICQC, SCC and SOSC hold at x∗

x∗
0

, these optimality conditions

also hold at x̃∗ for (4.1), by Theorem 4.4. If x∗
0 = 0, then x∗ is a minimizer at

infinity. By the assumptions, these optimality conditions also hold at x̃∗. Hence,
the LICQC, SCC and SOSC hold at every minimizer of (4.1). By Lemma 4.2, we
have fk = f ′

k = fmin for all k big enough. �

In Theorem 4.3, the minimum value fmin is not assumed to be achievable for
(1.1). When there are no equality constraints, the ideal Ideal[c̃E ] = Ideal[‖x̃‖2 − 1]
is real radical, regardless of inequality constraints.

For an exposition for Theorem 4.3, we consider Example 3.10. At the unique

minimizer x∗ = (−
√
3
3 ,−1 +

√
3
9 ), the first constraint x3

1 + x2 + 1 ≥ 0 is active
while the second one is not. Hence, we have that the Lagrange multipliers λ1 = 1,

λ2 = 0. The Hessian of the Lagrange function at x∗ is

[
2
√
3 0

0 0

]
. One can see

that the LICQC, SCC and SOSC all hold at x∗. One can check that there are no
minimizers at infinity and Ideal[c̃E ] = Ideal[‖x̃‖2−1] is real radical. By Theorem 4.3,
the hierarchy of (3.6)-(3.7) is tight for this optimization problem. In fact, we have
fk = fmin for all k ≥ 3.

In the following, we investigate when the optimality conditions hold for (4.1).

4.1. Optimality conditions for regular minimizers. An important property
of homogenization is that it preserves optimality conditions for regular minimizers.

Theorem 4.4. Suppose K is closed at ∞. Then, a point x∗ ∈ K is a minimizer
of (1.1) if and only if x̃∗ := (1, x∗)/

√
1 + ‖x∗‖2 is a minimizer of (4.1). Moreover,

we have:

(i) The LICQC holds for (1.1) at x∗ if and only if it holds for (4.1) at x̃∗.
(ii) Suppose the LICQC holds for (1.1) at x∗. Then, the SCC holds for (1.1)

at x∗ if and only if it holds for (4.1) at x̃∗.
(iii) Suppose the LICQC holds for (1.1) at x∗. Then, the SOSC holds for (1.1)

at x∗ if and only if it holds for (4.1) at x̃∗.

Proof. Without loss of generality, one can assume fmin = 0 up to shifting a constant
in f . By Lemma 3.2, when K is closed at ∞, f(x) ≥ 0 on K if and only if f̃(x̃) ≥ 0

on K̃, which is the feasible set of (4.1). Note that x∗ is a minimizer of (1.1) if and

only if f(x∗) = 0. Since f̃(x̃∗) = (1 + ‖x∗‖2)−d/2f(x∗), f̃(x̃∗) = 0 if and only if
f(x∗) = 0. Hence, x∗ is a minimizer of (1.1) if and only if x̃∗ is a minimizer of (4.1).
Since the constraint x0 ≥ 0 is not active at x̃∗, the label set of active constraints is

J(x∗) := {i ∈ E ∪ I : ci(x
∗) = 0}.

By the Euler’s identity for homogeneous polynomials, we have that for all x̃

xT∇xc̃i(x̃) + x0∇x0
c̃i(x̃) = deg(ci) · c̃i(x̃).

The above implies that

(4.2) (x∗)T∇xc̃i(x̃
∗) +∇x0

c̃i(x̃
∗) = 0

for all i ∈ J(x∗). Also note that

(4.3) ∇xc̃i(x̃
∗) = (

√
1 + ‖x∗‖2)1−deg(ci)∇ci(x

∗).
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(i)“⇐”: Suppose the LICQC holds for (4.1) at x̃∗, i.e., the gradients
[
∇x0

c̃i(x̃
∗)

∇xc̃i(x̃
∗)

]
(i ∈ J(x∗)),

[
1
x∗

]

are linearly independent. Then (4.2) implies that ∇xc̃i(x̃
∗) (i ∈ J(x∗)) are linearly

independent. By (4.3), we know the gradients ∇ci(x
∗) (i ∈ J(x∗)) are linearly

independent, i.e., the LICQC holds for (1.1) at x∗.

“⇒”: Assume the LICQC holds for (1.1) at x∗, i.e., the gradients ∇ci(x
∗) (i ∈

J(x∗)) are linearly independent. Suppose there are scalars µi, µ0 such that

(4.4)
∑

i∈J(x∗)

µi

[
∇x0

c̃i(x̃
∗)

∇xc̃i(x̃
∗)

]
+ µ0

[
1
x∗

]
= 0.

Note that c̃i(x̃
∗) = 0 for all i ∈ J(x∗). Premultiplying (x̃∗)T in (4.4) results in

0 =
∑

i∈J(x∗)

µi deg(ci) · c̃i(x̃∗) + µ0

√
1 + ‖x∗‖2 = µ0

√
1 + ‖x∗‖2.

Hence, we get µ0 = 0. By (4.3), the linear independence of ∇ci(x
∗) (i ∈ J(x∗))

implies that µi = 0 for all i ∈ J(x∗). So, the LICQC holds for (4.1) at x̃∗.

(ii) By the item (i), the LICQC holds at x̃∗ for (4.1). Since x̃∗ is a minimizer of
(4.1), there exist Lagrange multipliers λi (i ∈ J(x∗)) and λ0 such that

(4.5)

[
∇x0

F (x̃∗)
∇xF (x̃∗)

]
=

∑

i∈J(x∗)

λi

[
∇x0

c̃i(x̃
∗)

∇xc̃i(x̃
∗)

]
+ λ0

[
1
x∗

]
.

By the Euler’s identity for homogeneous polynomials, we have

(x̃∗)T∇x̃F (x̃∗) = 0, (x̃∗)T∇x̃c̃i(x̃
∗) = 0 (i ∈ J(x∗)).

The above and (4.5) imply that λ0 = 0. Let λ̂i = λi(
√

1 + ‖x∗‖2)d−deg(ci), then

(4.6) ∇f(x∗) =
∑

i∈J(x∗)

λ̂i∇ci(x
∗).

When the LICQC holds, the Lagrange multipliers are unique for both (1.1) and
(4.1).

“⇒”: Suppose the SCC holds for (1.1) at x∗. If otherwise the SCC fails to hold
for (4.1) at x̃∗, say, λj0 = 0 for some j0 ∈ J(x∗) ∩ I, then as in the above we can
get

∇f(x∗) =
∑

i∈J(x∗)\{j0}
λ̂i∇ci(x

∗).

Since the Lagrange multipliers are unique, the above implies that the SCC fails for
(1.1) at x∗, which is a contradiction. Therefore, the SCC holds for (4.1) at x̃∗.

“⇐”: Suppose the SCC holds for (4.1) at x̃∗, then λi > 0 for all i ∈ J(x∗) ∩ I
in (4.5). So, λ̂i > 0 for each i ∈ J(x∗) ∩ I in (4.6). Since the Lagrange multipliers
are unique, this means that the SCC holds for (1.1) at x∗.

(iii) Note that the LICQC holds for both (1.1) and (4.1).
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“⇒”: Suppose the SOSC holds (1.1) at x∗. Consider ỹ := (y0, y) in the tangent
space of active constraints of (4.1) at x̃∗, i.e.,

(4.7)
y0∇x0

c̃i(x̃
∗) + yT∇xc̃i(x̃

∗) = 0 (i ∈ J(x∗)),
y0 + yTx∗ = 0

.

The equation (4.2) implies that ∇x0
c̃i(x̃

∗) = −(x∗)T∇xc̃i(x̃
∗) for every i ∈ J(x∗).

So (4.7) is equivalent to

(4.8)
(y − y0x

∗)T∇xc̃i(x̃
∗) = 0 (i ∈ J(x∗)),

y0 + yTx∗ = 0
.

Let λi, λ̂i be Lagrange multipliers as in (4.5)-(4.6) for the proof of item (ii). Note
that λ0 = 0 and we shift f as fmin = 0, so we have

(4.9) (y − y0x
∗)T∇xf̃(x̃

∗) =
∑

i∈J(x∗)

λi(y − y0x
∗)T∇xc̃i(x̃

∗) = 0.

For the Lagrange function

(4.10) L(x̃) := f̃(x̃)−
∑

i∈J(x∗)

λic̃i(x̃),

its Hessian at x̃∗ is

∇2
x̃x̃L(x̃

∗) =

[ ∇2
x0,x0

L(x̃∗) ∇2
x,x0

L(x̃∗)
∇2

x,x0
L(x̃∗)T ∇2

x,xL(x̃
∗)

]
.

We express ∇2
x̃x̃L(x̃

∗) in terms of ∂2L(x̃∗)
∂xixj

(1 ≤ i ≤ n, 1 ≤ j ≤ n). Let

η0 :=
1√

1 + ‖x∗‖2
, η :=

x∗
√
1 + ‖x∗‖2

.

Similar to (4.2), it holds that

η0∇x0
f̃(x̃∗) + ηT∇xf̃(x̃

∗) = 0,
η0∇x0

c̃i(x̃
∗) + ηT∇xc̃i(x̃

∗) = 0 (i ∈ J(x∗))
.

Again, by Euler’s identity, we similarly have

(4.11) (d− 1)∇xj
f̃(x̃∗) =

[
∇2

xj ,x0
f̃(x̃∗) ∇2

xj ,xf̃(x̃
∗)
] [

η0
η

]
,

(deg(ci)− 1)∇xj
c̃i(x̃

∗) =
[∇2

xj ,x0
c̃i(x̃

∗) ∇2
xj ,xc̃i(x̃

∗)
] [η0

η

]
,

for all i ∈ J(x∗) and j = 0, . . . , n. For convenience, denote

v∗ := d∇xf̃(x̃
∗)−

∑

i∈J(x∗)

deg(ci)λi∇xc̃i(x̃
∗),

γ := d∇x0
f̃(x̃∗)−

∑

i∈J(x∗)

deg(ci)λi∇x0
c̃i(x̃

∗).
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With (4.5) and (4.11), we have

η0∇2
x,x0

L(x̃∗) = (d− 1)∇xf̃(x̃
∗)−

∑

i∈J(x∗)

(deg(ci)− 1)λi∇xc̃i(x̃
∗)−∇2

x,xL(x̃
∗)η

= v∗ −∇2
x,xL(x̃

∗)η,

(4.12)

(4.13) η0γ = −d∇xf̃(x̃
∗)Tη +

∑

i∈J(x∗)

deg(ci)λi∇xc̃i(x̃
∗)Tη = −ηTv∗.

Hence, the following holds

(4.14) (η0)
2∇2

x0,x0
L(x̃∗) = η0γ − η0∇2

x0,xL(x̃
∗)η = −2ηTv∗ + ηT∇2

x,xL(x̃
∗)η.

Consider the new Lagrange function

(4.15) L̂(x) := f(x)−
∑

i∈J(x∗)

λ̂ici(x).

Since the SOSC holds for (1.1) at x∗, we have

yT∇2L̂(x∗)y > 0, for each y 6= 0, yT∇ci(x
∗) = 0 (i ∈ J(x∗)).

The above is equivalent to

yT∇2
xxL(x̃

∗)y > 0, for each y 6= 0, yT∇xc̃i(x̃
∗) = 0 (i ∈ J(x∗)).

Using (4.12)-(4.14), one can verify that for ỹ = (y0, y) satisfying (4.8),

ỹT∇2
x̃x̃L(x̃

∗)ỹ = yT∇2
xxL(x̃

∗)y + 2y0y
T∇2

x,x0
L(x̃∗) + y20∇2

x0,x0
L(x̃∗)

= (y − y0x
∗)T∇2

x,xL(x̃
∗)(y − y0x

∗) +
2y0(y − y0x

∗)Tv∗

η0

= (y − y0x
∗)T∇2

x,xL(x̃
∗)(y − y0x

∗) ≥ 0.

(4.16)

In the third equality above, (y − y0x
∗)Tv∗ = 0 follows from (4.8)-(4.9). Moreover,

if ỹT∇2
x̃x̃L(x̃

∗)ỹ = 0, then y − y0x
∗ = 0, by the SOSC for (1.1) at x∗. Since

y0 + yTx∗ = 0 as in (4.8), we get

0 = (y − y0x
∗)Tx∗ = −y0(1 + ‖x∗‖2).

So, y0 = 0 and hence y = 0, i.e., ỹ = 0. This shows that the SOSC holds for (4.1)
at x̃∗.

“⇐”: When the SOSC holds for (4.1) at x̃∗, we show that it also holds for (1.1)
at x∗. Suppose otherwise the SOSC fails to hold for (1.1) at x∗, then there exists
u 6= 0 such that

uT∇2L̂(x∗)u = 0, uT∇ci(x
∗) = 0 (i ∈ J(x∗)).

Let ℓ̃ := (ℓ0, ℓ), where ℓ0 = −uTx∗/(1 + ‖x∗‖2) and ℓ = u + ℓ0x
∗. For the case

ℓ0 = 0, ℓ = u is nonzero. So, ℓ̃ is a nonzero vector. Note that

(ℓ− ℓ0x
∗)T∇xc̃i(x̃

∗) = uT∇xc̃i(x̃
∗) = 0 (i ∈ J(x∗)),

ℓTx∗ + ℓ0 = uTx∗ + ℓ0(1 + ‖x∗‖2) = 0.
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By equation (4.8), we know ℓ̃ lies in the tangent space of active constraints of (4.1)
at x̃∗. Moreover, similar as in (4.16), the following holds

ℓ̃T∇2
x̃x̃L(x̃

∗)ℓ̃ = (ℓ− ℓ0x
∗)T∇2

xxL(x̃
∗)(ℓ − ℓ0x

∗)

= uT∇2
x̃x̃L(x̃

∗)u = uT∇2L̂(x∗)u = 0.

This is a contradiction to that the SOSC holds at x̃∗ for (4.1). So the SOSC must
hold for (1.1) at x∗. �

The LICQC, SCC and SOSC all hold at every local minimizer of (1.1) for generic
polynomial optimization problems. This is a major conclusion in [41]. By Theo-
rem 4.4, we know these optimality conditions all hold at every regular minimizer
of (4.1) for generic polynomials.

4.2. Optimality conditions for minimizers at infinity. We consider minimiz-
ers at infinity. For a polynomial p, recall that p(1) denotes the homogeneous part of
the highest degree for p. Suppose K is closed at ∞ and x̃∗ = (0, x∗) is a minimizer
at ∞ for (4.1). By Theorem 3.6 and Lemma 4.1, we know f (1)(x∗) = 0 and x∗ is a
minimizer for

(4.17)






min f (1)(x)

s .t . c
(1)
i (x) = 0 (i ∈ E),
c
(1)
j (x) ≥ 0 (j ∈ I),
‖x‖2 − 1 = 0.

Denote the active label set

(4.18) J1(x
∗) :=

{
i ∈ E ∪ I | c(1)i (x∗) = 0

}
.

By the Fritz-John condition (see [4]), there exist scalars µ0, µi, µ̄ such that

µ0∇f (1)(x∗) =
∑

i∈J1(x∗)

µi∇c
(1)
i (x∗) + µ̄x∗,

while µ0, µi, µ̄ are not all zero. Note that ‖x∗‖ = 1. Since f (1)(x∗) = 0 and

c
(1)
i (x∗) = 0 for each i ∈ J1(x

∗), premultiplying (x∗)T in the above results in µ̄ = 0,
by the Euler’s identity. So the above is the same as

(4.19) µ0∇f (1)(x∗) =
∑

i∈J(x∗)

µi∇c
(1)
i (x∗).

First, we show that there are no minimizers at infinity for (1.1) if the polynomials
are generic. For this, we review some basic theory for resultants and discriminants.
We refer to [9, 37, 57]. Let p1, . . . , pn be forms in x := (x1, . . . , xn). The resultant
Res(p1, . . . , pn) is a polynomial in the coefficients of p1, . . . , pn such that

Res(p1, . . . , pn) = 0 ⇔ ∃ 0 6= u ∈ C
n, p1(u) = · · · = pn(u) = 0.

For m ≤ n, the discriminant ∆(p1, . . . , pm) is a polynomial in the coefficients of
p1, . . . , pm such that ∆(p1, . . . , pm) = 0 if and only if there exists 0 6= u ∈ C

n

satisfying

p1(u) = · · · = pm(u) = 0, rank [∇p1(u) · · · ∇pm(u)] < m.

Both Res(p1, . . . , pn) and ∆(p1, . . . , pm) are homogeneous polynomials in the co-
efficients of pi. The following is about nonexistence of minimizers at infinity for
generic polynomial optimization problems.
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Theorem 4.5. Suppose K is closed at ∞ and E = {1, . . . ,m1}, I = {m1 +
1, . . . ,m2}, m1 ≤ n − 1. If the polynomials f ∈ R[x]d0

and ci ∈ R[x]di
(i ∈ E ∪ I)

satisfy the conditions:

(i) For all m1 + 1 ≤ j1 < · · · < jn−m1
≤ m2

Res(c
(1)
1 , . . . , c(1)m1

, c
(1)
j1

, . . . , c
(1)
jn−m1

) 6= 0;

(ii) For all m1 + 1 ≤ j1 < · · · < jr ≤ m2 with 0 ≤ r ≤ n−m1 − 1

∆(f (1), c
(1)
1 , . . . , c(1)m1

, c
(1)
j1

, . . . , c
(1)
jr

) 6= 0,

then (1.1) has no minimizers at ∞.

Proof. Since K is closed at ∞, the optimal value of (4.17) is 0 if there is a minimizer
at infinity x∗. Let j1, . . . , jr be the labels of active inequality constraints for (4.17)
at x∗. The item (a) implies that r < n−m1. This is because if otherwise r ≥ n−m1,
then

Res(c
(1)
1 , . . . , c(1)m1

, c
(1)
j1

, . . . , c
(1)
jn−m1

) = 0.

The Fritz-John condition (4.19) implies that

∆(f (1), c
(1)
1 , . . . , c(1)m1

, c
(1)
j1

, . . . , c
(1)
jr

) = 0.

The conditions in (i)-(ii) deny existence of minimizers at infinity. �

For special polynomial optimization problems, there may exist minimizers at
infinity. For instance, this is the case if the optimal value is not achievable for (1.1)
(see Theorem 3.6). In the following, we study optimality conditions for minimizers
at infinity. Suppose x̃∗ := (0, x∗) is a minimizer at infinity for (4.1). Recall that
d = deg(f). The KKT equation for (4.1) at x̃∗ is in the form

(4.20)

[
f (2)(x∗)− d · fmin · 0d−1

∇f (1)(x∗)

]
=

∑
i∈J1(x∗)

λi

[
c
(2)
i (x∗)

∇c
(1)
i (x∗)

]
+

λ0

[
1
0

]
+ λ̄

[
0
x∗

]
.

Theorem 4.6. Suppose K is closed at ∞ and x̃∗ := (0, x∗) is a minimizer at
infinity for (4.1). Let J1(x

∗) be as in (4.18). Then, we have:

(i) The LICQC holds for (4.1) at x̃∗ if and only if the gradients

∇c
(1)
i (x∗) (i ∈ J1(x

∗))

are linearly independent.
(ii) Suppose the LICQC holds for (4.1) at x̃∗. Then, in (4.20), we have

(4.21) λ0 = f (2)(x∗)− d · fmin · 0d−1 −
∑

i∈J1(x∗)

λic
(2)
i (x∗), λ̄ = 0.

Moreover, the SCC holds for (4.1) at x̃∗ if and only if

(4.22) λ0 > 0, λi > 0 (i ∈ J1(x
∗) ∩ I).
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(iii) Suppose the LICQC holds for (4.1) at x̃∗. Let λi be Lagrange multipliers
as in (4.20). Then, the SOSC holds for (4.1) at x̃∗ if and only if for every
nonzero y satisfying

(4.23)
yT∇c

(1)
i (x∗) = 0 (i ∈ J1(x

∗)),
yTx∗ = 0

,

we have yT∇2L1(x
∗)y > 0, where

L1(x) = f (1)(x)−
∑

i∈J1(x∗)

λic
(1)
i (x).

Proof. (i) The constraint x0 ≥ 0 is active (4.1) at x̃∗. The LICQC at x̃∗ for (4.1)
requires the linear independence of the gradients

[
c
(2)
i (x∗)

∇c
(1)
i (x∗)

]
(i ∈ J1(x

∗)),

[
1
0

]
,

[
0
x∗

]
.

“⇒”: Suppose the LICQC holds at x̃∗ for (4.1). If there is a linear combination

such that
∑

i∈J1(x∗) µi∇c
(1)
i (x∗) = 0, then

∑

i∈J1(x∗)

µi

[
c
(2)
i (x∗)

∇c
(1)
i (x∗)

]
+ µ0

[
1
0

]
= 0

for µ0 = −∑
i∈J1(x∗) µic

(2)
i (x∗). The LICQC holds at x̃∗ for (4.1) implies that all

µi = 0. Hence, the gradients ∇c
(1)
i (x∗) (i ∈ J1(x

∗)) are linearly independent.

“⇐”: Suppose the gradients ∇c
(1)
i (x∗) (i ∈ J1(x

∗)) are linearly independent. Con-
sider a linear combination such that

(4.24)
∑

i∈J1(x∗)

µi

[
c
(2)
i (x∗)

∇c
(1)
i (x∗)

]
+ µ0

[
1
0

]
+ µ̄

[
0
x∗

]
= 0.

Since c
(1)
i (x∗) = 0 for each i ∈ J1(x

∗), we have (x∗)T∇c
(1)
i (x∗) = 0. Premultiplying

(x̃∗)T in the above results in µ̄‖x∗‖2 = 0, so µ̄ = 0. The linear independence of

∇c
(1)
i (x∗) (i ∈ J(x∗)) implies that µi = 0 for all i ∈ J1(x

∗). Finally, we get µ0 = 0.
So, the LICQC holds at x̃∗ for (4.1).

(ii) Note that x̃∗ = (0, x∗) is a minimizer of (4.1). Since the LICQC holds at x̃∗,
there exist scalars λ̄, λ0, λi (i ∈ J1(x

∗)) satisfying (4.20). Premultiplying (x̃∗)T in
(4.20), by the Euler’s identity, we can express λ0, λ̄ = 0 as in (4.21). The SCC for
(4.1) at x̃∗ is equivalent to (4.22).

(iii) Since the LICQC holds, there exist Lagrange multipliers λ0, λi as in (4.20).
The Lagrange function for (4.1) is

L(x̃) := F (x̃)−
∑

i∈J1(x∗)

λic̃i(x)− λ0x0.

Its Hessian expression at x̃∗ is

∇2
x̃,x̃L(x̃

∗) =

[
L3(x

∗) ∇L2(x
∗)T

∇L2(x
∗) ∇2L1(x

∗)

]
,
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where

L2(x) = f (2)(x)−
∑

i∈J1(x∗)

λic
(2)
i (x),

L3(x) = 2f (3)(x) − d(d− 1) · fmin · 0d−2 −
∑

i∈J1(x∗)

2λic
(3)
i (x).

Consider ỹ := (y0, y) in the tangent space of active constraints of (4.1) at x̃∗, i.e.,

(4.25)
y0c

(2)
i (x∗) + yT∇c

(1)
i (x∗) = 0 (i ∈ J(x∗)),

yTx∗ = 0, y0 = 0
.

Note that (4.25) is equivalent to (4.23). The SOSC for (4.1) at x̃∗ requires: for
every ỹ 6= 0 satisfying (4.25), it holds that

ỹT∇2
x̃x̃L(ỹ

∗)ỹ = yT∇2L1(x
∗)y > 0.

The above is equivalent to that yT∇2L1(x
∗)y > 0 for every y 6= 0 satisfying (4.23).

So the conclusion of item (iii) holds. �

4.3. The even degree case. When f and cj (j ∈ I) all have even degrees, the
homogenization (3.4) is equivalent to (3.8); see Proposition 3.4. This means that
the constraint x0 ≥ 0 is redundant for (4.1). Typically, the SCC fails to hold for
minimizers at infinity. For this case, Theorem 4.3 is not applicable for showing the
finite convergence for the hierarchy of (3.6)-(3.7). However, the same conclusion like
in Theorem 4.3 holds under optimality conditions without the constraint x0 ≥ 0.

The kth order SOS relaxation for (3.8) is

(4.26)

{
max γ

s .t . f̃(x̃)− γxd
0 ∈ Ideal[c̃E ]2k +QM[c̃I∗ ]2k.

Its dual optimization is the kth order moment relaxation

(4.27)





min 〈f̃ , y〉
s .t . L

(k)
p [y] = 0 (p ∈ c̃E),

L
(k)
q [y] � 0 (q ∈ c̃I∗),

Mk[y] � 0,

〈xd
0 , y〉 = 1, y ∈ RN

n+1

2k .

In the above, the polynomial tuple c̃I∗ is

(4.28) c̃I∗ :=
{
c̃j(x̃)

}
j∈I .

Let fe
k and fe,′

k denote the optimal values of (4.26), (4.27) respectively. To study
their convergence, we consider the optimization problem

(4.29)





min F (x̃) = f̃(x̃)− fmin · xd
0

s .t . c̃i(x̃) = 0 (i ∈ E),
c̃j(x̃) ≥ 0 (j ∈ I),
x2
0 + ‖x‖2 − 1 = 0.

For the even degree case, the LICQC, SCC and SOSC are said to hold at a minimizer
at infinity x∗ if they hold for (4.29) at (0, x∗). The following is the convergence for
the hierarchy of relaxations (4.26)-(4.27).
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Theorem 4.7. Assume K is closed at ∞, Ideal[c̃E ] is real radical, f and cj (j ∈ I)
all have even degrees. If the LICQC, SCC and SOSC hold at every minimizer of
(1.1), including the one at infinity, then the hierarchy of relaxations (4.26)-(4.27)
is tight, i.e., there exists k0 such that

fe
k = fe,′

k = fmin for all k ≥ k0.

Moreover, the hierarchy of relaxations (3.6)-(3.7) is also tight.

Proof. The proof is almost the same as for Theorem 4.3. Under the given assump-
tions, there exist σ ∈ QM[c̃I∗ ], φ ∈ Ideal[c̃E ] such that

f̃ − fminx
d
0 = φ+ σ.

So, the hierarchy of (4.26)-(4.27) is tight. Since QM[c̃I∗ ] ⊆ QM[c̃I ], the hierarchy
of (3.6)-(3.7) is also tight. �

In the following, we discuss optimality conditions for minimizers at infinity of
(4.29). Suppose x̃∗ = (0, x∗) is a minimizer at infinity for (4.29). Let J1(x

∗) be as
in (4.18). Since d is even, the KKT equation for (4.29) at x̃∗ is

(4.30)

[
f (2)(x∗)
∇f (1)(x∗)

]
=

∑

i∈J1(x∗)

λi

[
c
(2)
i (x∗)

∇c
(1)
i (x∗)

]
+ λ̄

[
0
x∗

]
.

The following is a similar version of Theorem 4.6.

Theorem 4.8. Suppose K is closed at ∞ and x̃∗ = (0, x∗) is a minimizer at ∞
for (4.29). Assume f and cj (j ∈ I) all have even degrees. Let d = deg(f) > 1 and
let J1(x

∗) be as in (4.18). Then, we have:

(i) The LICQC holds for (4.29) at x̃∗ if and only if the gradients
[
c
(2)
i (x∗)

∇c
(1)
i (x∗)

]
(
i ∈ J1(x

∗)
)

are linearly independent.
(ii) Suppose the LICQC holds for (4.29) at x̃∗. Then, λ̄ = 0 and (4.30) is

reduced to

(4.31)

[
f (2)(x∗)
∇f (1)(x∗)

]
=

∑

i∈J1(x∗)

λi

[
c
(2)
i (x∗)

∇c
(1)
i (x∗)

]
.

The SCC holds for (4.29) at x̃∗ if and only if λi > 0 for i ∈ J1(x
∗) ∩ I.

(iii) Suppose the LICQC holds for (4.29) at x̃∗. Let λi be Lagrange multipliers
as in the item (ii) and let H be the matrix

H =

[
2f (3)(x∗)− d(d− 1)fmin0

d−2 ∇f (2)(x∗)T

∇f (2)(x∗) ∇2f (1)(x∗)

]
(4.32)

−
∑

i∈J1(x∗)

λi

[
2c

(3)
i (x∗) ∇c

(2)
i (x∗)T

∇c
(2)
i (x∗) ∇2c

(1)
i (x∗)

]
.

Then, the SOSC holds for (4.29) at x̃∗ if and only if ỹTHỹ > 0 for every
nonzero ỹ = (y0, y) satisfying

(4.33)
y0c

(2)
i (x∗) + yT∇c

(1)
i (x∗) = 0 (i ∈ J1(x

∗)),
yTx∗ = 0

.
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Proof. The proofs for the item (i) and (ii) are exactly the same as for (i), (ii) in
Theorem 4.6. So they are omitted for cleanness. The item (iii) can be shown as
follows. The matrix H is the Hessian at x̃∗of the Lagrange function

L(x̃) = f̃(x̃)−
∑

i∈J1(x∗)

λic̃i(x).

A vector ỹ = (y0, y) lies in the tangent space of active constraints of (4.29) at x̃∗ if
and only if it satisfies (4.33). Thus, the SOSC holds for (4.29) at x̃∗ if and only if
ỹTHỹ > 0 for every nonzero ỹ satisfying (4.33). �

5. Extensions of Putinar-Vasilescu’s Positivstellensatz

In this section, we generalize the Putinar-Vasilescu’s Positivstellensatz [47, 48]
to polynomials that are nonnegative on unbounded semialgebraic sets. Under some
assumptions on optimality conditions, we prove the conclusions of the Putinar-
Vasilescu’s Positivstellensatz.

For a polynomial tuple g := (g1, . . . , gm), consider the semialgebraic set

(5.1) S := {x ∈ R
n | gj(x) ≥ 0, j = 1, . . . ,m}.

Recall that f (1) denotes the homogeneous part of the highest degree for f . The
following is the classical Putinar-Vasilescu’s Positivstellensatz.

Theorem 5.1. ([47, Theorems 1,2]) Let f, g1, . . . , gm ∈ R[x] and S be as in (5.1).
Then, we have:

(i) Suppose f , g1, . . . , gm are homogeneous polynomials of even degrees. If
f > 0 on S\{0}, then ‖x‖2kf ∈ QM[g] for some power k ∈ N.

(ii) If the form f (1) is positive definite in Rn and f > 0 on S, then (1 +
‖x‖2)kf ∈ QM[g] for some power k ∈ N.

For the case that S = Rn, if f is a positive definite form, then ‖x‖2kf is SOS
for some power k. This conclusion is referred to as the Reznick’s Positivstellensatz
and it is shown in [49].

First, we generalize the item (i) of Theorem 5.1. Consider the normalized opti-
mization problem

(5.2)





min f(x)
s .t . gj(x) ≥ 0, j = 1, . . . ,m,

‖x‖2 − 1 = 0.

Theorem 5.2. Let S be the set as in (5.1). Suppose f, g1, . . . , gm are homogeneous
polynomials of even degrees such that f ≥ 0 on S. If the LICQC, SCC and SOSC
hold at every minimizer of (5.2), then ‖x‖2kf ∈ QM[g] for some k ∈ N.

Proof. By Theorem 1.1 of [41], since fmin ≥ 0, there exist polynomials σi ∈ Σ[x]
and h ∈ R[x] such that (let g0 := 1)

f =

m∑

i=0

σigi + h · (‖x‖2 − 1).

Let 2d0 := deg(f) and 2di := deg(gi). In the above identity, if we substitute xi for
xi

‖x‖ , then we get

f(x)

‖x‖2d0
=

m∑

i=0

σi

(
x

‖x‖

)
gi(x)

‖x‖2di
.
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Furthermore, we can also get

2f(x)

‖x‖2d0
=

m∑

i=0

[
σi

(
x

‖x‖

)
+ σi

( −x

‖x‖

)] gi(x)

‖x‖2di
.

Note that the odd degree terms in σi

(
x

‖x‖

)
+ σi

(
−x
‖x‖

)
are cancelled. The above

implies that ‖x‖2kf ∈ QM[g] when k is large enough. �

Second, we generalize the item (ii) of Theorem 5.1. Consider the optimization

(5.3)

{
min f(x)
s .t . gj(x) ≥ 0, j = 1, . . . ,m.

For convenience, we still let fmin denote the minimum value of (5.3). The homog-
enized optimization problem is

(5.4)





min f̃(x̃)− fmin · (x0)
d

s .t . g̃1(x̃) ≥ 0, . . . , g̃m(x̃) ≥ 0,
‖x̃‖2 − 1 = 0.

Theorem 5.3. Let S be as in (5.1). Suppose f ≥ 0 on S, then we have:

(i) Suppose S is closed at ∞ and the degrees of f, g1, . . . , gm are even. If the
LICQC, SCC and SOSC hold at every minimizer of (5.3), including the
one at infinity, then (1 + ‖x‖2)kf ∈ QM[g] for some k ∈ N.

(ii) If the form f (1) is positive definite in Rn and the LICQC, SCC and SOSC
hold at every minimizer of (5.3), then (1 + ‖x‖2)kf ∈ QM[g] for some
k ∈ N.

Proof. (i) It follows from Theorem 4.4 that the LICQC, SCC and SOSC hold at
every regular minimizer of (5.4). By Theorem 4.7, since fmin ≥ 0, there exist
polynomials σi ∈ Σ[x̃] and h ∈ R[x̃] such that (note g0 = 1)

(5.5) f̃ =

m∑

i=0

σig̃i + h · (‖x̃‖2 − 1).

As in the proof of Theorem 5.2, we can similarly show that

‖x̃‖2kf̃ ∈ QM[g̃1, . . . , g̃m],

for some k ∈ N. Substituting x0 for 1, we get (1 + ‖x‖2)kf ∈ QM[g].

(ii) For each i, let θi := 2⌈deg(gi)
2 ⌉−deg(gi). We consider the following homogenized

optimization problem

(5.6)






min
x̃∈Rn+1

f̃(x̃)− fmin · (x0)
d

s .t . xθ1
0 g̃1(x̃) ≥ 0, . . . , xθm

0 g̃m(x̃) ≥ 0,
‖x̃‖2 − 1 = 0.

Note that fmin ≥ 0 and the degree of f is even. Let ũ = (u0, u) be a feasible point

of (5.6). If u0 = 0, then ‖u‖ = 1 and f̃(ũ)− fmin · (u0)
d = f (1)(u) > 0, since f (1) is

a positive definite form. If u0 6= 0, then u/u0 is feasible for (5.3) and

f̃(ũ)− fmin · (u0)
d = ud

0

(
f(u/u0)− fmin

)
≥ 0.

Hence, the optimal value of (5.6) is zero. By similar arguments as for Theorem 4.4,
the LICQC, SCC and SOSC hold at every regular minimizer of (5.6). Since f (1)

is a positive definite form, (5.6) has no minimizers at infinity. Note that each
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xθi
0 g̃i is a polynomial of even degree. As for part (i), we can similarly show that

(1 + ‖x‖2)kf ∈ QM[g] for some k ∈ N. �

When one of the LICQC, SCC and SOSC fails to hold, the conclusion (1 +
‖x‖2)kf ∈ QM[g] may not hold. We refer to [32] for such examples. When there is
an equality constraint in (1.1), we cannot simply replace ci(x) = 0 by two inequali-
ties ci(x) ≥ 0 and −ci(x) ≥ 0, since the LICQC always fails for the latter case. For
the case of equality constrains, we need to assume that Ideal[c̃E ] is real radical. For
convenience of notation, denote the polynomial tuples

cE :=
{
ci(x)

}
i∈E , cI :=

{
cj(x)

}
j∈I .

The following is the Positivstellensatz for sets with equality constraints.

Theorem 5.4. Let K be the feasible set of (1.1). Assume that Ideal[c̃E ] is real
radical and f ≥ 0 on K, then we have:

(i) Suppose K is closed at ∞ and the degrees of f, ci (i ∈ I) are all even. If
the LICQC, SCC and SOSC hold at every minimizer of (1.1), including the
one at infinity, then (1 + ‖x‖2)kf ∈ Ideal[cE ] +QM[cI ] for some k ∈ N.

(ii) Suppose the form f (1) is positive definite in Rn. If the LICQC, SCC and
SOSC hold at every minimizer of (1.1), then (1 + ‖x‖2)kf ∈ Ideal[cE ] +
QM[cI ] for some k ∈ N.

Proof. (i) Since the degrees of f, ci (i ∈ I) are all even, we consider the optimization
problem (4.29). The conclusion can be shown in the same way as for item (i) of
Theorem 5.3.

(ii) For each j ∈ I, let θj := 2⌈deg(cj)
2 ⌉−deg(cj). Consider the following homogenized

optimization problem

(5.7)





min f̃(x̃)− fmin · (x0)
d

s .t . c̃i(x̃) = 0 (i ∈ E),
x
θj
0 c̃j(x̃) ≥ 0 (j ∈ I),

‖x̃‖2 − 1 = 0.

Since f (1) is a positive definite form, the optimization (5.7) has no minimizers
at infinity. By similar arguments as for Theorem 4.4, the optimality conditions
LICQC, SCC and SOSC hold at every regular minimizer of (5.7). The conclusion
can be shown in the same way as for item (ii) of Theorem 5.3. �

6. The Moment-SOS hierarchy with denominators

The Putinar-Vasilescu’s Positivstellensatz motivates Moment-SOS relaxations
with denominators for solving polynomial optimization. In view of Theorem 5.4,
we consider the hierarchy of relaxations (d = deg(f))

(6.1)

{
max γ

s .t . (1 + ‖x‖2)k−⌈ d
2
⌉(f − γ) ∈ Ideal[cE ]2k +QM[cI ]2k,

for the order k ≥ ⌈d
2⌉. The relaxation (6.1) is essentially expressing f−γ in terms of

sums of squares of rational polynomials, with the denominator a power of 1+ ‖x‖2.
Let fden

k denote the optimal value of (6.1) for the relaxation order k. The following
is the comparisons between the relaxations (3.6) (or (4.26) for the even degree case)
and (6.1):
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• The polynomials in (6.1) are only in the variable x, while the polynomials
in (3.6) and (4.26) are in both x and x0.

• The relaxation (3.6) uses the constraint x0 ≥ 0, while (6.1) and (4.26) do
not use it. So (3.6) is the strongest among them.

• When the degrees of f and ci (i ∈ I) are all even, the relaxation (4.26) is
equivalent to (6.1). This can be observed as in the proof of Theorem 5.2.
For the special case that f is an even degree form and K is the unit sphere,
the equivalence is shown in [17].

We remark that (6.1) is the relaxation given in [32] for the parameter ǫ = 0. It is
conjectured in [32, Sec. 4.2] that the hierarchy of (6.1) has finite convergence, under
some optimality conditions. We prove this conjecture is true under the assumptions
of Theorem 5.4. Recall that for the even degree case, the LICQC, SCC and SOSC
are said to hold at a minimizer at infinity x∗ if they hold for (4.29) at (0, x∗).

Theorem 6.1. Let K be the feasible set of (1.1). Assume Ideal[c̃E ] is real radical.

(i) Suppose K is closed at ∞ and the degrees of f, ci (i ∈ I) are even. If the
LICQC, SCC and SOSC hold at every minimizer of (1.1), including the one
at infinity, the hierarchy of (6.1) has finite convergence, i.e., fden

k = fmin

for all k big enough.
(ii) Suppose f (1) is a positive definite form in Rn. If the LICQC, SCC and

SOSC hold at every minimizer of (1.1), then fden

k = fmin for all k big
enough.

Proof. The conclusions follow from Theorem 5.4. For the item (ii), there are no
minimizers at infinity if f (1) is a positive definite form in Rn. �

In Theorem 6.1(i), the degrees of f, ci (i ∈ I) are assumed to be even, but the
degrees of equality constraining polynomials ci (i ∈ E) can be either odd or even.

A special case of (1.1) is that there are no constraints. Then the resulting version
of the relaxation (6.1) is

(6.2)

{
max γ

s .t . (1 + ‖x‖2)k−⌈ d
2
⌉(f − γ) ∈ Σ[x]2k,

for the order k ≥ ⌈d
2⌉. The degree d must be even for fmin > −∞, when there are

no constraints. When f (1) is a positive definite form, the asymptotic convergence
of (6.2) can be shown by Reznick’s Positivstellensatz [49, Sec. 7]. We have the
following theorem about the finite convergence.

Theorem 6.2. Suppose K = R
n and fmin > −∞. Let fden

k denote the optimal
value of (6.2) for the order k.

(i) If the SOSC holds at every minimizer of (1.1), including the one at infinity,
then fden

k = fmin for all k big enough.
(ii) If n ≤ 2, then fden

k = fmin for all k big enough.

Proof. The item (i) follows from Theorem 5.4 (i). It is shown by Scheiderer [50]
that if p(u) is a nonnegative form in u ∈ Rn with n ≤ 3, then ‖u‖2Np(u) is SOS
when N is big enough. This implies that

(1 + ‖x‖2)k−⌈ d
2
⌉(f − fmin) ∈ Σ[x]2k

when k is big enough, for the case n ≤ 2. The item (ii) follows from this conclusion.
�
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7. Numerical examples

This section presents some examples on the relaxations (3.6) for solving the
optimization problem (1.1). The computation is implemented in MATLAB R2019a,
on a Dell Desktop with CPU@2.90GHz and RAM 32.0G. The relaxations (3.6) −
(3.7) are solved by the software GloptiPoly 3 [14], which calls the SDP package
SeDuMi [56]. For neatness, only four decimal digits are displayed for computational
results. The feasible sets of all examples are unbounded.

7.1. The case with minimizers. A convenient criterion for obtaining minimizers
is the flat extension or truncation. Denote the degree

(7.1) dK := max{⌈deg(f)/2⌉, ⌈deg(ci)/2⌉(i ∈ E ∪ I)}.

Suppose y∗ is a minimizer of (3.7) for the relaxation order k. If there exists an
integer t ∈ [dK , k] such that

(7.2) rankMt[y
∗] = rankMt−dK

[y∗],

then we can get one or several minimizers for (4.1) (see [3, 13, 27, 38]). When (7.2)
holds, we have the decomposition

y∗|2t = a1[

(
τ1
v1

)
]2t + · · ·+ ar[

(
τr
vr

)
]2t

for positive scalars ai > 0 and distinct points (τi, vi) ∈ K̃. Denote two label sets

I1 = {i : τi > 0}, I2 = {i : τi = 0}.

For each i ∈ I1, let ui = vi/τi. Then ui ∈ K for each i ∈ I1 and vi ∈ K(1) for each
i ∈ I2. Let νi = ai(τi)

d for each i ∈ I1 and νi = ai for each i ∈ I2.

Lemma 7.1. Suppose y∗ is a minimizer of (3.7) and the rank condition (7.2) is
satisfied. Let each ui, vi, νi be as above. Then the set I1 6= ∅ and each ui (i ∈ I1) is
a minimizer for (1.1), and each vi (i ∈ I2) is a minimizer at infinity for (1.1).

Proof. Note that ui ∈ K for each i ∈ I1 and vi ∈ K(1) for each i ∈ I2, the constraint
〈xd

0, y〉 = 1 in (3.7) implies that
∑

i∈I1
νi = 1. So at least one νi > 0 and I1 6= ∅.

Since vi (i ∈ I2) is a feasible point of K(1), by item (iii) of Theorem 3.6, we have
f (1)(vi) ≥ 0 for i ∈ I2 and hence

fmin = 〈f̃ , y∗〉 =
∑

i∈I1

νif(ui) +
∑

i∈I2

νif
(1)(vi)

≥
∑

i∈I1

νif(ui) ≥
∑

i∈I1

νifmin = fmin.

Therefore, f(ui) = fmin for i ∈ I1, and f(vi) = 0 for i ∈ I2. �

We refer to [3, 13, 27, 38] for flat extensions and truncations. The procedure
of extracting minimizers by using (7.2) is implemented in GloptiPoly 3 [14]. The
rank condition (7.2) is a sufficient and almost necessary condition for checking
convergence of the Moment-SOS hierarchy [38].
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Example 7.2. (i) Consider the optimization (the variable x0 = 1):

min
x∈R4

4∑

i=0

∏

i6=j∈{0,1,...,4}
(xi − xj) + 0.1

( 4∑

i=1

x4
i

)
.

The first part of the objective is a nonnegative but non-SOS polynomial [49]. For
the order k = 3, we get f3 ≈ 0.0763 and the minimizer 0.5757 · (1, 1, 1, 1). There
are no minimizers at infinity.
(ii) Consider the optimization:

{
min
x∈R2

x2
1x2 + x2

2x1 − 3x1x2

s .t . x1 ≥ 0, x2 ≥ 0.

Up to a constant, the objective becomes the dehomogenization of the Motzkin form
[49] if each xi is changed to x2

i . For the order k = 3, we get f3 ≈ −1.0000 and
a minimizer (1.0000, 1.0000). We also get two minimizers at infinity. They are
(1.0000, 0.0000) and (0.0000, 1.0000).
(iii) Consider the optimization:

{
min
x∈R2

x2
1x2 + x2

2 + x1 − 3x1x2

s .t . x1 ≥ 0, x2 ≥ 0.

The objective becomes the dehomogenization of the Choi-Lam form [49] if each xi is
changed to x2

i . For the order k = 2, we get f2 ≈ 2.9586× 10−8 and two minimizers:
(1.0000, 1.0000), (0.0000, 0.0000). We also get two minimizers at infinity. They are
(1.0000, 0.0000) and (0.0000, 1.0000).
(iv) Consider the optimization:

{
min
x∈R2

x3
1 + x3

2 + 3x1x2 − x2
1(x2 + 1)− x2

2(x1 + 1)− (x1 + x2)

s .t . x1 ≥ 0, x2 ≥ 0.

Up to a constant, the objective becomes the dehomogenization of the Robinson
form [49] if each xi is changed to x2

i . For the order k = 2, we get f2 ≈ −1.0000 and
three minimizers:

(1.0000, 1.0000), (0.0000, 1.0000), (1.0000, 0.0000).

We also get one minimizer at infinity: (0.7071, 0.7071).

Example 7.3. (i) Consider the constrained optimization:





min
x∈R2

x6
1 + x6

2 + 1 + 3x2
1x

2
2 − x2

1

(
x4
2 + 1

)

−x2
2

(
1 + x4

1

)
−
(
x4
1 + x4

2

)

s .t . x1 + x2 + 1 = 0

This problem is a variation of Example 5.2 in [39]. For the order k = 3, we get
f3 ≈ 5.4436×10−6 and we get two minimizers: (−1.0000, 0.0000), (0.0000,−1.0000).
We also get two minimizers at infinity:

(0.7068,−0.7074), (−0.7074, 0.7068).
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(ii) Consider the constrained optimization:





min
x∈R2

x2
1 + x2

2

s .t . x2
2 − 1 ≥ 0,

x2
1 − 2x1x2 − 1 ≥ 0,

x2
1 + 2x1x2 − 1 ≥ 0.

This example is from [39]. The minimum value fmin ≈ 6.8284 and the minimizers

are (±(1 +
√
2),±1). There are no minimizers at infinity. For the order k = 3, we

get f3 ≈ 6.8284 and four minimizers: (±2.4142,±1.0000).
(iii) Consider the constrained optimization:






min
x∈R3

x2
1 (x1 − 1)2 + x2

2 (x2 − 1)2 + x2
3 (x3 − 1)2

+2x1x2x3 (x1 + x2 + x3 − 2)

+ (x1 − 1)
2
+ (x2 − 1)

2
+ (x3 − 1)

2

s .t . x1 − 2x2
2 ≥ 0, x2 − x3 ≥ 0.

The sum of the first four terms of the objective is a nonnegative polynomial [49].
For k = 2, we get f2 ≈ 0.4708 and the minimizer (0.6979, 0.6980, 0.6978).
(iv) Consider the constrained optimization:






min
x∈R2

2x3
1 + 2x3

2 + 4x1x2 − x1

(
x2
2 + 1

)

+x2

(
1 + x2

1

)
+ x2

1 + x2
2

s .t . x1 ≥ 1, x2 ≥ 1.

For k = 2, we get f2 ≈ 2.0000 and the minimizer (1.0000, 1.0000).

7.2. The case with no minimizers. When the minimum value fmin of (1.1) is
not achievable, i.e., (1.1) has no minimizers, then the moment relaxation (3.7) can
not have a minimizer y∗ satisfying (7.2). This is implied by Lemma 7.1. Indeed,
the moment relaxation (3.7) typically does not achieve its optimal value, i.e., it
does not have optimizers either. For such cases, there often exist numerical issues
for solving Moment-SOS relaxations (3.6)-(3.7), although the finite convergence is
guaranteed under some assumptions on minimizers at infinity.

For instance, consider the unconstrained optimization with the objective f =
x4
1 + (x1x2 − 1)2. Clearly, fmin = 0 is not achievable and fk = f ′

k = 0 for all k ≥ 2.
The moment relaxation (3.7) does not have an optimizer. The objective in (3.7)
is y040 + y022 − 2y211 + y400. For k ≥ 2, the moment matrix constraint Mk[y] � 0
implies that 



y400 y310 y301 y220 y211 y202
y310 y220 y211 y130 y121 y112
y301 y211 y202 y121 y112 y103
y220 y130 y121 y040 y031 y022
y211 y121 y112 y031 y022 y013
y202 y112 y103 y022 y013 y004




� 0.

Note that y400 = 1. When y is feasible for (3.7), we can get

y040 ≥ 0, y022 ≥ 0, y022 − 2y211 + 1 ≥ 0.

If y040 > 0, then 〈f̃ , y〉 > 0. If y040 = 0, then

y022 = 0, y211 = 0, y022 − 2y211 + 1 = 1 > 0.
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The objective of (3.7) is positive for all feasible y, so it does not achieve the optimal
value. There are numerical troubles for for solving the Moment-SOS relaxations.

When fmin is not achievable, a more numerically well-posed problem is to com-
pute minimizers at infinity. We apply the Moment-SOS relaxations to solve the
optimization problem (4.17) for one or several minimizers x∗ at infinity. When the
optimality conditions hold at minimizers of (4.17), its Moment-SOS hierarchy has
finite convergence, so its minimizers can be obtained (see [38, 41]). For fmin > −∞,
it is necessary that f (1)(x∗) = 0. This is implied by Theorem 3.6.

Example 7.4. (i) Consider the optimization:

min
x∈R2

x2
2 + (2x2

2 + 2x1x2 + 1)2.

The minimum value fmin = 0 is not achievable. The minimizers at infinity are
(±1, 0), ( 1√

2
,− 1√

2
), (− 1√

2
, 1√

2
). For the order k = 3, we get f3 ≈ 9.8893 × 10−9

and four minimizers at infinity:

(−1.0000, 0.0001), (1.0000,−0.0001), (−0.7071, 0.7071), (0.7071,−0.7071).

(ii) Consider the optimization:

min
x∈R3

x2
1 + (1 − x1x2)

2 + L(x),

where L = x4
1x

2
2 + x4

2x
2
3 + x4

3x
2
1 − 3x2

1x
2
2x

2
3 is the Choi-Lam form. Clearly, fmin ≥ 0.

For the sequence of x(k) = ( 1n , n, 0), we have f(x(k)) = 2
n2 . As k → 0, we have

f(x(k)) → 0, which implies fmin = 0. However, fmin = 0 is not achievable, since
the polynomial x2

1 + (1− x1x2)
2 has no real zeros. The objective f is not an SOS,

since f (1) = L(x) is not an SOS. The minimizers at infinity are

1√
3
(±1,±1,±1), (±1, 0, 0), (0,±1, 0), (0, 0,±1).

For k = 5, we get f5 ≈ −1.6413× 10−8 and all the minimizers at infinity.
(iii) Consider the optimization:

min
x∈R3

ǫ((x2
3 + x1x3 + 1)2 + x6

3) +R(x),

where ǫ > 0 and R is the dehomogenized Robinson polynomial

R(x) = 1 + x6
2 + x6

3 + 3x2
2x

2
3 − (x2

2 + x2
3)− x4

2(1 + x2
3)− x4

3(1 + x2
2).

Clearly, fmin ≥ 0, since the objective is a sum of two nonnegative polynomials. For

the sequence of x(k) = (− 1+n2

n , 1, 1
n ), we have f(x(k)) = 1+ǫ−2n2+n4

n6 . As k → 0,

we have f(x(k)) → 0. So, fmin = 0. However, fmin is not achievable, since the
polynomial (x2

3+x1x3+1)2+x2
3 has no real zeros. For ǫ > 0 small enough, f is not

an SOS. The minimizers at infinity are (±1, 0, 0). Let ǫ = 1, for the order k = 3, we
get f3 ≈ 3.1810× 10−10 and two minimizers at infinity: (±1.0000, 0.0000, 0.0000).
(iv) Consider the optimization:





min
x∈R5

(x1 + x2 + x3 + x4x5)
2 − 4

(
x1x2 + x2x3 + x3(x4x5 − 1)

+x4x5 − 1 + x1

)
+ (x1 − 1)2 + x2

4

s .t . x1 ≥ 0, x2 − x1 ≥ 0, x3 − x2 ≥ 0,
x4 − x3 ≥ 0, x5 − x4 ≥ 0, x4x5 ≥ 1.
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The minimum value fmin = 0 is not achievable. The minimizer at infinity is
(0, 0, 0, 0, 1). For the order k = 2, we get f2 ≈ 6.2486× 10−9 and the minimizer at
infinity (0.0000, 0.0000, 0.0000, 0.0000, 1.0000).

When minimizers at infinity are obtained, we can apply the procedure in [45]
to determine the value fmin. With these minimizers at infinity, one can drop some
connected components of the tangency variety that do not converge to minimizers
at infinity. This can save computational expense. For instance, we consider the
polynomial f = (x1x2 − 1)2 + x2

2 and K = R2. Clearly, the minimum value fmin is
not attainable. By the procedure in [45], the tangency variety Γ

(
f,R2

)
is given by

the equation:

2
(
−x3

1x2 + x1x
3
2 + x2

1 − x1x2 − x2
2

)
= 0.

For R > 0 large enough, the set Γ
(
f,R2

)
∩ {x2

1 + x2
2 ≥ R} has eight connected

components:

Γ±1 : x1 := t, x2 := −t+ 1
2 t

−1 + 5
8 t

−3 + · · · ,
Γ±2 : x1 := t, x2 := t+ 1

2 t
−1 + 3

8 t
−3 + · · · ,

Γ±3 : x1 := t, x2 := t−1 − t−3 + · · · ,
Γ±4 : x1 := t−1, x2 := t+ t−1 − t−3 + · · · ,

for a parameter t → +∞ or t → −∞. As in [45], one can compute the asymptotic
value of f in each component Γ±i. Substituting the parametrization in f , we get

f |Γ±1
= t4 + 4t2 + 2− 23

8 t
−2 + · · · , f |Γ±2

= t4 + 2 + 5
8 t

−2 + · · ·
f |Γ±3

= t−2 − t−4 + t−6 + · · · , f |Γ±4
= t2 + 2− t−2 − t−4 + · · · .

The asymptotic values on these components are

λ±1 = λ±2 = λ±4 = +∞, λ±3 = 0.

Therefore, the minimum value fmin = min
k=1,2,3,4

λ±k = 0. For this example, the

minimizers at infinity are (±1, 0) and (0,±1). In the computation, if minimizers
at infinity are obtained, we do not need to consider the components Γ±1, Γ±2,
since their normalizations do not converge to minimizers at infinity. We refer to
[11, 12, 53] for related work for the case that fmin is not achievable.

8. Conclusions and discussions

This paper gives a Moment-SOS hierarchy for polynomial optimization with
unbounded sets, based on homogenization. We prove this hierarchy has finite con-
vergence under some assumptions on optimality conditions about minimizers. We
also extend the Putinar-Vasilescu type Positivstellensatz to polynomials that are
nonnegative on unbounded sets. The classical Moment-SOS hierarchy with denom-
inators is also studied. Moreover, we give a positive answer to a conjecture of Mai,
Lasserre and Magron in their recent work [32].

To prove the convergence of the hierarchy of (3.6)-(3.7), we made the assump-
tion that the ideal Ideal[c̃E ] is real radical. We remark that Ideal[c̃E ] being real
radical is a general condition (see [58]). When Ideal[c̃E ] is not real radical, we do
not know if the hierarchy of (3.6)-(3.7) still has the finite convergence, under the
remaining assumptions as in Theorem 4.3. However, we have the following result
when Ideal[c̃E ] is not real radical.
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Theorem 8.1. Assume K is closed at ∞. If the LICQC, SCC and SOSC hold at
every minimizer of (1.1), including the one at infinity, then there exists an integer
k0 > 0 such that

(8.1) x2ℓ
0 (f̃ − (fmin − ǫ) · xd

0) ∈ Ideal[c̃E ] + QM[c̃I ]

for every ǫ > 0 and for all ℓ ≥ k0.

Proof. As in Theorem 4.3, there exists σ ∈ QM[c̃I ] such that

f̃ − fminx
d
0 ≡ σ mod Ideal[VR(c̃E)].

Let f̄ = f̃ − fmin · xd
0 − σ. Then f̄ vanishes identically on the variety VR(c̃E).

By the Real Nullstellensatz (see [29]), there exist k1 ∈ N, σ1 ∈ Σ[x̃] such that
f̄2k1 +σ1 ∈ Ideal[c̃E ]. Let ω > 0 be big enough such that the univariate polynomial
s(t) := 1 + t+ ωt2k1 is SOS (see [40]). For each ǫ > 0, we get

(ǫxd
0)

2k1s(
f̄

ǫxd
0

) = (ǫxd
0)

2k1−1(f̄ + ǫxd
0) + ωf̄2k1 .

This implies that

x
(2k1−1)d
0

(
f̃ − (fmin − ǫ)xd

0 − σ
)
= (ǫxd

0)
2k1s(

f̄

ǫxd
0

)− ωf̄2k1 .

Since x0 ∈ c̃I and σ1 is SOS, we have

(ǫxd
0)

2k1s(
f̄

ǫxd
0

)− ωf̄2k1 ∈ Σ[x̃] + Ideal[c̃E ] ⊆ Ideal[c̃E ] + QM[c̃I ],

x0((ǫx
d
0)

2k1s(
f̄

ǫxd
0

)− ωf̄2k1) ∈ x0Σ[x̃] + Ideal[c̃E ] ⊆ Ideal[c̃E ] + QM[c̃I ].

Let k0 = ⌈ (2k1−1)d
2 ⌉. Then, we have

x2k0

0 (f̃ − (fmin − ǫ)xd
0) = x2k0

0 σ + x
2k0−(2k1−1)d
0 ((ǫxd

0)
2k1s(

f̄

ǫxd
0

)− ωf̄2k1).

It implies that

x2k0

0 (f̃ − (fmin − ǫ)xd
0) ∈ Ideal[c̃E ] + QM[c̃I ].

Note that k0 is independent of ǫ > 0. The above implies that (8.1) holds for all
ǫ > 0 and for all ℓ ≥ k0. �

For a degree ℓ ≥ k0, (8.1) motivates the hierarchy of the following relaxations

(8.2)

{
max γ

s .t . x2ℓ
0 (f̃(x̃)− γxd

0) ∈ Ideal[c̃E ]2k +QM[c̃I ]2k.

Theorem 8.1 shows that the optimal value of relaxations (8.2) has the finite conver-
gence to fmin, even if Ideal[c̃I ] is not real radical, under the remaining assumptions.
Because of this result, we make the following conjecture.

Conjecture 8.2. When the ideal Ideal[c̃E ] is not real radical, the hierarchy of
relaxations (3.6)-(3.7) is also tight, i.e., fk = f ′

k = fmin, for all k big enough, under
the other assumptions of Theorem 4.3.
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When the minimum value fmin is not achievable, the Moment-SOS hierarchy
of relaxations (3.6)-(3.7) also has finite convergence under some assumptions on
optimality conditions for minimizers at infinity. However, there are numerical issues
for solving the hierarchy, since there are no optimizers satisfying flat truncation for
the moment relaxations. It is an interesting future work to get numerically stable
Moment-SOS relaxations for computing fmin when it is not achievable.
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