Skip to main content
Log in

A trust region method for noisy unconstrained optimization

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Classical trust region methods were designed to solve problems in which function and gradient information are exact. This paper considers the case when there are errors (or noise) in the above computations and proposes a simple modification of the trust region method to cope with these errors. The new algorithm only requires information about the size/standard deviation of the errors in the function evaluations and incurs no additional computational expense. It is shown that, when applied to a smooth (but not necessarily convex) objective function, the iterates of the algorithm visit a neighborhood of stationarity infinitely often, assuming errors in the function and gradient evaluations are bounded. It is also shown that, after visiting the above neighborhood for the first time, the iterates cannot stray too far from it, as measured by the objective value. Numerical results illustrate how the classical trust region algorithm may fail in the presence of noise, and how the proposed algorithm ensures steady progress towards stationarity in these cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bellavia, S., Gurioli, G., Morini, B., Toint, P.: The impact of noise on evaluation complexity: the deterministic trust-region case. arXiv preprint arXiv:2104.02519 (2021)

  2. Berahas, A.S., Byrd, R.H., Nocedal, J.: Derivative-free optimization of noisy functions via quasi-Newton methods. SIAM J. Optim. 29(2), 965–993 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berahas, A.S., Cao, L., Choromanski, K., Scheinberg, K.: A theoretical and empirical comparison of gradient approximations in derivative-free optimization. Found. Comput. Math. pp. 1–54 (2021)

  4. Berahas, A.S., Cao, L., Scheinberg, K.: Global convergence rate analysis of a generic line search algorithm with noise. SIAM J. Optim. 31(2), 1489–1518 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berahas, A.S., Curtis, F.E., O’Neill, M.J., Robinson, D.P.: A stochastic sequential quadratic optimization algorithm for nonlinear equality constrained optimization with rank-deficient Jacobians. arXiv preprint arXiv:2106.13015 (2021)

  6. Berahas, A.S., Curtis, F.E., Robinson, D., Zhou, B.: Sequential quadratic optimization for nonlinear equality constrained stochastic optimization. SIAM J. Optim. 31(2), 1352–1379 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blanchet, J., Cartis, C., Menickelly, M., Scheinberg, K.: Convergence rate analysis of a stochastic trust region method via submartingales. INFORMS J. Optim. 1(2), 92–119 (2019)

    Article  MathSciNet  Google Scholar 

  8. Bollapragada, R., Byrd, R., Nocedal, J.: Adaptive sampling strategies for stochastic optimization. SIAM J. Optim. 28(4), 3312–3343 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bollapragada, R., Byrd, R.H., Nocedal, J.: Exact and inexact subsampled newton methods for optimization. IMA J. Numer. Anal. (2018)

  10. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. Siam Rev. 60(2), 223–311 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Byrd, R.H., Chin, G.M., Nocedal, J., Wu, Y.: Sample size selection in optimization methods for machine learning. Math. Program. 134(1), 127–155 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carter, R.G.: On the global convergence of trust region algorithms using inexact gradient information. SIAM J. Numer. Anal. 28(1), 251–265 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cartis, C., Gould, N.I.M., Toint, P.: Strong evaluation complexity of an inexact trust-region algorithm with for arbitrary-order unconstrained nonconvex optimization. arXiv preprint arXiv:2001.10802 (2021)

  14. Cartis, C., Scheinberg, K.: Global convergence rate analysis of unconstrained optimization methods based on probabilistic models. Math. Program. 169(2), 337–375 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, R., Menickelly, M., Scheinberg, K.: Stochastic optimization using a trust-region method and random models. Math. Program. 169(2), 447–487 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Conn, A.R., Gould, N.I.M., Toint, P.L.: Numerical experiments with the LANCELOT package (Release A) for large-scale nonlinear optimization. Math. Program. Ser. A 73(1), 73–110 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Curtis, F.E., Scheinberg, K.: Adaptive stochastic optimization: a framework for analyzing stochastic optimization algorithms. IEEE Signal Process. Mag. 37(5), 32–42 (2020)

    Article  Google Scholar 

  18. Curtis, F.E., Scheinberg, K., Shi, R.: A stochastic trust region algorithm based on careful step normalization. INFORMS J. Optim. 1(3), 200–220 (2019)

    Article  MathSciNet  Google Scholar 

  19. Friedlander, M.P., Schmidt, M.: Hybrid deterministic–stochastic methods for data fitting. SIAM J. Sci. Comput. 34(3), A1380–A1405 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jin, B., Scheinberg, K., Xie, M.: High probability complexity bounds for line search based on stochastic oracles. Adv. Neural Inf. Process. Syst. 34, 9193–9203 (2021)

    Google Scholar 

  21. Cao, L., Berahas, A.S., Scheinberg, K.: First-and second-order high probability complexity bounds for trust-region methods with noisy oracles. arXiv preprint arXiv:2205.03667 (2022)

  22. Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O., Venkatesh, G., et al.: Mixed precision training. arXiv preprint arXiv:1710.03740 (2017)

  23. Moré, J.J., Wild, S.M.: Estimating computational noise. SIAM J. Sci. Comput. 33(3), 1292–1314 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nedić, A., Bertsekas, D.: Convergence rate of incremental subgradient algorithms. In: Stochastic Optimization: Algorithms and Applications, pp. 223–264. Springer (2001)

  25. Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Found. Comput. Math. 17(2), 527–566 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ng, L.W., Willcox, K.E.: Multifidelity approaches for optimization under uncertainty. Int. J. Numer. Methods Eng. 100(10), 746–772 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, New York (1999)

    Book  MATH  Google Scholar 

  28. Öztoprak, F., Byrd, R., Nocedal, J.: Constrained optimization in the presence of noise. arXiv preprint arXiv:2110.04355 (2021)

  29. Paquette, C., Scheinberg, K.: A stochastic line search method with convergence rate analysis. arXiv preprint arXiv:1807.07994 (2018)

  30. Pasupathy, R., Glynn, P., Ghosh, S., Hashemi, F.S.: On sampling rates in simulation-based recursions. SIAM J. Optim. 28(1), 45–73 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Peherstorfer, B., Willcox, K., Gunzburger, M.: Survey of multifidelity methods in uncertainty propagation, inference, and optimization. Siam Rev. 60(3), 550–591 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Polyak, B.T.: Introduction to Optimization. Optimization Software, vol. 1, p. 32. Inc., Publications Division, New York (1987)

    Google Scholar 

  33. Schittkowski, K.: More Test Examples for Nonlinear Programming Codes. Lecture Notes in Economics and Mathematical Systems, vol. 282 (1987)

  34. Shi, H.J.M., Xie, Y., Xuan, M.Q., Nocedal, J.: Adaptive finite-difference interval estimation for noisy derivative-free optimization. arXiv preprint arXiv:2110.06380 (2021)

  35. Xie, Y., Byrd, R.H., Nocedal, J.: Analysis of the BFGS method with errors. SIAM J. Optim. 30(1), 182–209 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Richard Byrd and the referees for many valuable suggestions. We are also grateful to Figen Öztoprak, Andreas Wächter and Melody Xuan for proofreading the paper and providing useful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Nocedal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sun was supported by NSF Grant DMS-1620022. Nocedal was supported by AFOSR Grant FA95502110084 and ONR Grant N00014-21-1-2675.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 4545 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Nocedal, J. A trust region method for noisy unconstrained optimization. Math. Program. 202, 445–472 (2023). https://doi.org/10.1007/s10107-023-01941-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-023-01941-9

Keywords

Mathematics Subject Classification