Skip to main content

Advertisement

Log in

A fast combinatorial algorithm for the bilevel knapsack problem with interdiction constraints

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider the bilevel knapsack problem with interdiction constraints, a fundamental bilevel integer programming problem which generalizes the 0–1 knapsack problem. In this problem, there are two knapsacks and n items. The objective is to select some items to pack into the first knapsack such that the maximum profit attainable from packing some of the remaining items into the second knapsack is minimized. We present a combinatorial branch-and-bound algorithm which outperforms the current state-of-the-art solution method in computational experiments for 99% of the instances reported in the literature. On many of the harder instances, our algorithm is orders of magnitude faster, which enabled it to solve 53 of the 72 previously unsolved instances. Our result relies fundamentally on a new dynamic programming algorithm which computes very strong lower bounds. This dynamic program solves a relaxation of the problem from bilevel to 2n-level where the items are processed in an online fashion. The relaxation is easier to solve but approximates the original problem surprisingly well in practice. We believe that this same technique may be useful for other interdiction problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Algorithm 6
Algorithm 7
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kleinert, T., Labbé, M., Ljubić, I., Schmidt, M.: A survey on mixed-integer programming techniques in bilevel optimization. EURO J. Comput. Optim. 9, 100007 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dempe, S.: Bilevel Optimization: Theory, Algorithms, Applications and a Bibliography. In: Dempe, S., Zemkoho, A. (eds.) Bilevel Optimization: Advances and Next Challenges, pp. 581–672. Springer, Cham (2020)

    Chapter  MATH  Google Scholar 

  3. Smith, J.C., Song, Y.: A survey of network interdiction models and algorithms. Eur. J. Oper. Res. 283(3), 797–811 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. DeNegre, S.: Interdiction and discrete bilevel linear programming. PhD thesis, Lehigh University (2011)

  5. Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.J.: A study on the computational complexity of the bilevel knapsack problem. SIAM J. Optim. 24(2), 823–838 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Von Stackelberg, H.: The Theory of the Market Economy. Oxford University Press, England (1952)

    MATH  Google Scholar 

  7. Chen, L., Wu, X., Zhang, G.: Approximation algorithms for interdiction problem with packing constraints. arXiv preprint arXiv:2204.11106 (2022)

  8. Pisinger, D.: Where are the hard knapsack problems? Comput. Operations Res. 32, 2271–2284 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.J.: Bilevel knapsack with interdiction constraints. Informs J. Comput. 28(2), 319–333 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tang, Y., Richard, J.-P.P., Smith, J.C.: A class of algorithms for mixed-integer bilevel min-max optimization. J. Glob. Optim. 66, 225–262 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: A new general-purpose algorithm for mixed-integer bilevel linear programs. Oper. Res. 65(6), 1615–1637 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fischetti, M., Ljubic, I., Monaci, M., Sinnl, M.: Interdiction games and monotonicity, with application to knapsack problems. Informs J. Comput. 31, 390–410 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lozano, L., Bergman, D., Cire, A.A.: Constrained shortest-path reformulations for discrete bilevel and robust optimization. arXiv preprint arXiv:2206.12962 (2022)

  14. Fischetti, M., Monaci, M., Sinnl, M.: A dynamic reformulation heuristic for generalized interdiction problems. Eur. J. Operations Res. 267, 40–51 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Della Croce, F., Scatamacchia, R.: An exact approach for the bilevel knapsack problem with interdiction constraints and extensions. Math. Program. 183(1), 249–281 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pisinger, D.: An expanding-core algorithm for the exact 0–1 knapsack problem. Eur. J. Oper. Res. 87(1), 175–187 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Weninger, N., Fukasawa, R.: A Fast Combinatorial Algorithm for the Bilevel Knapsack Problem with Interdiction Constraints. In: Del Pia, A., Kaibel, V. (eds.) Integer Programming and Combinatorial Optimization, pp. 438–452. Springer, Cham (2023)

    Chapter  MATH  Google Scholar 

  18. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack problems. Springer, Berlin, Heidelberg (2004)

  19. Martello, S., Pisinger, D., Toth, P.: Dynamic programming and strong bounds for the 0–1 knapsack problem. Manag. Sci. 45(3), 414–424 (1999)

    Article  MATH  Google Scholar 

  20. Tahernejad, S., Ralphs, T.K., DeNegre, S.T.: A branch-and-cut algorithm for mixed integer bilevel linear optimization problems and its implementation. Math. Program. Comput. 12(4), 529–568 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fontan, F.: Knapsack Solver (Github source code repository). https://github.com/fontanf/knapsacksolver. Accessed 20 Mar 2023 (2017)

  22. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), [funding reference numbers RGPIN-2020-04030 and CGSD-2023-578589].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noah Weninger.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

An extended abstract of this paper appeared in the proceedings of IPCO 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weninger, N., Fukasawa, R. A fast combinatorial algorithm for the bilevel knapsack problem with interdiction constraints. Math. Program. 210, 847–879 (2025). https://doi.org/10.1007/s10107-024-02133-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-024-02133-9

Keywords