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Abstract. A general ordertheoretic linear programming model for the study of matroid-type greedy algo-
rithms is introduced. The primal restrictions are given by so-called weakly increasing submodular functions on
antichains. The LP-dual is solved by a Monge-type greedy algorithm. The model offers a direct combinatorial
explanation for many integrality results in discrete optimization. In particular, the submodular intersection
theorem of Edmonds and Giles is seen to extend to the case with a rooted forest as underlying structure. The
core of associated polyhedra is introduced and applications to the existence of the core in cooperative game
theory are discussed.
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1. Introduction

The present investigation is motivated by two fundamental questions. The first arises
from cooperative game theory, where so-calteshvexgames (cf. Shapley [1971])
have the attractive property to possess not only a non-engg/but allow efficient
optimization of linear functions over the core. Can this class of games be extended to
a larger class with the same features?

Cores of convex games are also knowrbase polytopesf submodular structures
(cf. Fujishige [1991]), for which the greedy algorithm is known to be a fundamental
algorithmic optimization technique. Extending the work of Queyragtrad. [1993], it
was shown in Faigle and Kern [1996] that the greedy algorithm for polymatroids and
the Monge algorithm for transportation problems with a suitable cost structure are just
algorithmic manifestations of the same primal-dual pair of linear programs involving
submodular constraints and submodular costs respectively that can, more generally, be
defined relative to an underlying order structure given by a rooted forest. Hence the
question arises how this model generalizes to arbitrary (partial) orders.

It turns out that a generalization to arbitrary orders is not possible unless we impose
some restrictions on the class of submodular functions under considerations. We show in
Sect. 2 thata full analog of the fundamental algorithmic properties of the previous models
can be obtained when we restrict ourselves to submodular functions thatakdy

U. Faigle: Mathematisches Institut, Zentrum fiir Angewandte Informatik, Universitat zu Kéin, Weyertal 80,
D-50931 KéIn, Germany, e-mailaigle @zpr.uni-koeln.de

W. Kern: Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, The
Netherlands

Mathematics Subject Classification (1999pC27, 90D12



484 Ulrich Faigle, Walter Kern

increasingrelative to the underlying order structure. In Sect. 3, we derive integrality
properties for the pairs of submodular linear programs, which offer the (primal and dual)
greedy algorithm as an explanation for many min-max properties of discrete structures.
In particular, we extend the Intersection Theorem of Edmonds and Giles [1977] from
unordered ground sets to rooted forests.

The core of a submodular structure is introduced in Sect. 4. In contrast to the
situation with (unordered) polymatroids, “maximal” feasible vectors may have different
component sums. By definition, the core consists of the feasible vectors of maximal
component sum. It can be shown that the greedy algorithm can be modified to optimize
arbitrary linear functions over the core relative to a weakly increasing submodular
function.

We discuss the relationship with the core of cooperative games in Sect. 5. Taking
a different look than suggested by Bondareva’s [1963] and Shapley’s [baéafjced-
ness conditiong/e are able to tie the existence of the core of an (arbitrary) cooperative
game to the integrality of an LP-relaxation of a natural partitioning problem for the
groundset of “players”. The special case of an order structure with a submodular func-
tion on the collection of antichains then yields a far-reaching extension of the classical
convex games.

2. A Greedy Algorithm for a class of submodular programs

In this section, we extend the model of Faigle and Kern [1996] to a wider class of
structures and show that the same greedy algorithm works optimally.

Let E be a (finite) set and consider the (partial) or®er (E, <). With anySC E
we associate thileal generated by via

id(9 :={xe€ E|x < sforsomese S}.

Denoting bySt the collection of maximal elements of the orderestricted toS,
we note thaiSt is anantichain i.e., a subset of pairwise incomparable elements, and
that every antichair arises asA = (id(A))*. So we can define two binary operations
on the set4 of antichains by setting foA, B € A,

AV B:= (id(A)Uid(B))™"
AAB:=(d(A)Nid(B)™".

We remark that A, v, A) is adistributive lattice(seee.g., Birkhoff [1967]).

Let f : A — R be given. Throughout our investigations we will assume that
is normalizedi.e., f(¥) = 0. Let furthermorec : E — R be a weighting oft and
consider both the linear prograo®:

maxc' x )
st. X(A) < f(A) forall Ac A,
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where we use the shorthand notatigi\) = » . a Xe for vectorsx € RE, and its dual
DLP:

min Z f(A)ya
Ac A
st. ) ya =ceforallecE (2)
Ase

YA > 0 forall A e A.

It is straightforward to see that the following algorithm yields a feasible solution for
DLP (cf. Faigle and Kern [1996]).

(Dual) Greedy Algorithm:

Initialize: ya < OforallAc A ;
X« E;
w<«C;
T <@
lterate: WHILEX # ¢ DO:
determine some e X* with we minimal ;
Yx+ < We;
T < er;
wa <« [wa — we] forallae Xt ;
X <« [X\e€];

A run of the Greedy Algorithm will produce a linear extension

T = €62...6€n

of P, namely the reverse order in which the algorithm discards the elemeBtgRécall
that alinear extensiorof P is a permutationr = e1€>. .. e, of the groundseE such
thatg < ej in P impliesi < j).

With the linear extensiomr we associate therimally greedyvector x™ as the
(unique) vectox € RE satisfying fori = 1,...,n,

X(E") = f(E") .

whereEj = {e, e, ... ,6}.
Denoting byy the greedy solution vector fdDLP and letting the vectok™ be

defined as above, it follows that
T, fT

c'x" = fly.

Hence bothx™ andy are optimal solutions for the linear programB and DLP
wheneverx” is a feasible solution foltP. We will now introduce a class of structural
constraints relative to which feasibility & can be proved.

The functionf : A — R is said to besubmodulaiwor concavgrelative toP) if for
all A, B e A,

f(Av B) + f(AA B) < f(A) + f(B).
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In order to illustrate this concept of concavity, consider the complete bipartite graph
Kn.n with nonnegative costs(i, j) on the edges, j). Recall that the costs are said to
have theMonge property(cf. Burkardet al.[1996]) if for all i1, i2 and j1, jo,

clitViz, jaVj2)+cli1Aiz, jaAj2) <cli, j1) +cliz, j2)
where we set for any two integesst € N,

sVt :=maxs,t}
SAt:=min{s t}.

Itis straightforward to check that in this model of edge-weighted bipartite graphs the
Monge property amounts exactly to the concavity of the cost function on the 2-element
antichains. Furthermore, it is easy to extend the cost function with Monge property to
a concave function defined fall antichains. For example, we may choose a condtant
larger than any edge cost and assign to the singleton with intiexcostc(i) =i - M.

Remark.In the special case where the ordeiis a union of pairwise disjoint linear
orders, our model is essentially the submodular model of Queyetradg1993].
|

Remark.A function f is supermodulaKa.k.a. ‘tonvex’) if (—f) is submodular. Iff
is defined for all subsets & and f(¥) = 0 holds, thenf*(S§ = f(E) — f(E\ S gives
rise to a functionf* such that f*)* = f. Moreover,f is convex if and only iff* is
concave.

Reversing the inequalities appropriately, it is straightforward to see that one may
obtain a theory for cores associated with supermodular functions that is completely
analogous to our submodular model here. Cooperative game theory traditionally prefers
the model ofconvexgames (where a “profit” is to be allocated) to the concave “cost”
model (see Shapley [1971]). It is not difficult to verify that the “concave coref of
equals the “convex core” relative tio*.

|

Unfortunately, submodularity of is not necessarily sufficient to guarantee feas-
ibility of x™ (cf. Example 4.1 in Faigle and Kern [1996]). We requir¢o satisfy an
additional condition.

Recall thath € E is anupper neighboof a € E relative toP if a < b holds inP
and there is ne@ € E with a < ¢ < b. We say that the functior : 4 — R is weakly
increasingif for everye € E with at least 2 upper neighbors relativeRahe following
property holds:

AUeec A implies f(AUe) > f(A).

For example,f is trivially weakly increasing if every element & has at most
one upper neighbor relative #® (which is the defining property of th@oted forests
investigated in Faigle and Kern [1996]).

For our feasiblity proof, we need a technical lemma. So, for some minimal element
e € E, consider the induced ord& = P\ {€} on the ground seE’ = E \ {e} and
denote byA’ the collection of antichains d®’. We define the functiori’ : A" — R via

, | f(Aue — f(e) if AUe € A
P = { f(A) otherwise.
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Lemma 1. Assume thatf : A — R is submodular and weakly increasing, and let
e € E be a minimal element with respect B Then alsof’ : A" — R is weakly
increasing and submodular.

Proof. The minimality ofe and the submodularity of together immediately imply
f(A) > f/(A) for all A € A’. Hence it is straightforward to see théat is weakly
increasing. We want to show that is submodular.

Let A, B € A’ be arbitrary antichains. IA U e was an antichain relative #, then
also(A A B) U ewas inA. Moreover,(A v B) U ewas an antichain i if and only if
B U ewas an antichain. So in either cadé satisfies the submodular inequality far
andB becausef was submodular.

We may therefore assume that neitldev e nor B U e (and hence nofA v B) U e)
are antichains irP. If also (A A B) U e was no antichainf’ coincides withf relative
to (A, B) and submodularity follows.

Consider finally the case whet& A B) U ewas indeed an antichain . This can
only mean thatA A B) U eis precisely the infimum of andB relative to the latticed
of antichains. So the submodularity bfyields under the present conditions

f'(AVB)+ f(AABYUE < f/(A)+ f'(B).

It suffices now to show thaf’(AA B) < f((AAB)Ue),i.e, f(e) > 0, holds.
To this end, we note that under the present conditions the elesmetessarily must
have at least 2 upper neighbors.€lfiad only one upper neighbet, say,e would be
dominated by members of bothandB and A A BU ewould be no antichain). Because
f is weakly increasing, we thus conclude tHet) > f(¥) = 0, as required.
|

Theorem 1. Assume thaf : A — R is submodular and weakly increasing, and#et
be a linear extension d relative to the ordelP = (E, <). Then the vectox” satisfies
forall A e A,

x(A) < f(A).

Proof. We proceed by induction on the sifg| of the underlying ground sd&. Note
thatn’ = e, e3,..., 6, is a linear extension oP’ wheneverr = e, e, ..., €&, is
a linear extension oP.

Fix the minimal elemeng; and define the functiorf’ as in Lemma 1 relative to
e = e;. By induction, we may assume for all € A,

X7 (A) < f'(A).
By construction, we have™ = ( f(e1), x™ ). Hence
X"(A) < (A

must hold for allA € A.
O

Corollary 1. If f is submodular and weakly increasing, then the greedy algorithm
solves the linear programs LP and DLP optimally.
|
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Remark.The construction of the vectaf reduces to the greedy algorithm of Edmonds
[1970] in the case of a trivial orddP (see also Ichishi [1981]). In the general case,
however, it isnot “greedy” in the sense that it would build up a linear extensién
by successively adjoining elements with largest possible weights. In fact, such a naive
“greedy algorithm” does not work (cf. the next example). Our greedy algorithm is
motivated rather by the well-knowxW-corner ruleor Monge greedy algorithrfor the
bipartite assignment problem (cf. Burkaetlal.[1994]).

|

Example.Consider the seE = {a, b, ¢, d} and orderP with the only non-trivial order
relationsa < d andb < c. Let A consist of all antichains d? and definef : A — R
by f(#) = 0 andf(A) = 1 otherwise.

Relative to the weightingua = 5, wp = 4, we = 3, wqg = 1, the “naive” greedy
algorithm would construct the linear extension= abcdwith associated vecto® =
(1,0,0, 1). The linear extensiony = bacd however, yields a better vecto? =
(0,1,1,0).

|

It is not difficult to extend our model to more general famili¢of antichains that
are closed under the operationsaind A as follows.

Let D denote the family ofll ideals of P and letL € D be a subfamily that is
closed under union and intersection. Set

AL) == {LT|LeL}.

Note thatA(L) is closed under andA. If the corresponding linear prograbiP(L)
has an optimal solution at all, we may assume w.l.0.g. that each elemErdgagfurs in
some antichain itd(£) (thus, in particularg € £).

Let us say that the elemergsf € E areequivalentle ~ f) (relative to. A(L)) if
for everyA € A(L), e € Aholds exactly wherf € Ais true. Set

[e] ;= {feE|f~¢}.
Lemma?2. Forallec ET,E\[e]l e L.

Proof. Observe thafte] € E* holds. ThusE \ [€] is an ideal inP (and hence a member
of D).

Suppose there exists sorhee L that properly containg& \ [€]. Then there must
exist somef e [e] with f € L. Becausef € LT, we concludde] € L,i.e, L = E.
SoE\ [€] is the intersection of all members Gfcontaining it and, therefore, also itself
a member of_.

|

Lemma 3. If max{}_ ceXe | X(A) < f(A) forall A e A(L)}isbounded,thete = c¢
whenevee ~ f.
O

Arguing with the equivalence classis instead of the elemenésLemmas 2 and 3
now allow us to derive the analog of Lemma 1 and Theorem 1 in the same way.
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3. Intersection of submodular structures

In this section, we will investigate integrality properties of linear programs that are
defined by submodular functions on antichains or functions that are expressible as
minima of pairs of submodular functions. We also allow for lower and upper bounds
l,u: E— RU{—00, oo} on primally feasible vectors.

Let P = (E, <) be an ordered set and denotedyhe collection of all antichains.
(We remark here that it suffices to requidgust to be a collection of antichains that is
closed under the operatiorsandA).

Consider an arbitrary functidn: R — A, with h(¢) = 0, together with a weighting
c € RE. As in the previous section, we are interested in the linear program

max c'x
st. er <h(A) forall Ae A

ecA (3)
Xe < Ue foralleceE
Xe > leg forallecE

and its dual
mn  hTy+ufs— ITt
st. Z YA+ S — te =ceforallec E
Ac A (4)
ec A

y.,st>0.

Say that the linear inequalities that occur as constraints in (3) and the linear inequal-
ities occurring as constraints in (4) forniatally dual integralpair of linear inequalities
provided the following is true: the maximum in (3) is achieved by an integral vexctor
if I, u andh are integral and, furthermore, the minimum in (4) is attained by an integral
vector(y, s, t) if cis integral (provided both linear programs are feasible).

Theorem 2. Assume that is submodular and weakly increasing. Then (3) and (4) form
a totally dual integral pair.

Proof. Let (y*, s*,t*) be an optimal solution of (4) and consider the linear program

min  hTu
st. ) ua=ciforallec E
Ac A (5)
ecA
u =0,

wherec* = ¢ — s* 4 t*.
By the results of the previous section, (5) can be solved by the (dual) greedy
algorithm. So we can assume thyét in fact, is this solution. Set

L :={AcAly,>0}.
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Problem (5) now is equivalent to

min Zh(A)yA
AcL
st Y YA +Se—te=cCeforallecE ©)
Ac Ll
ec A
y, st > 0.

If £ ={As, ..., A, we may assumi(Aj) C id(Aj) fori < j. From this, it is
easy to see that the matim with rows indexed byE and columns indexed b§ such

that
1 ifeeA

Men = {O otherwise

has theconsecutivé’s propertyi.e., in each row oM the 1's occur consecutively. Such
a matrix is well-known to be totally unimodular (seeg., Schrijver [1986, p.279]).
(Recall that a matrix is said to lietally unimodulaiif the determinant of every square
submatrix takes on a value {0, —1, 1}.)

BecauseM is totally unimodular and the columns associated with the variables
andt correspond to identity matrices, it is clear that the constraints of (6) are totally
unimodular. Hence (6) and, therefore, (5) has an integral optimal solutiofsifan
integral vector.

Finally, if I, u andh are integral, our argument shows that the optimal objective
function value of (5) and, by linear programming duality, of (3) is an integer whenever
cisintegral. By Theorem (2.9) of Hoffman [1982], the latter implies that the vertices of
the feasibility region of the linear program (3) are integral, which yields the theorem.

O

Theorem 2 allows us, for example, to derive the Theorem of Greene [1976] in the
same spirit as in Hoffman [1982]:

Example.For every fixedk € N, the functionh(A) = k for A # ¢ is submodular and
(trivially) weakly increasing on the collection of antichains. Consider the case where
Ce=11le=0,anduc = 1forallec E.

By Theorem 2, (4) has an optimal integral solution. It is clear that this solution must
have(0, 1)-components and thus corresponds to a partitioB ofto antichains that is
minimal relative to the weight functiody(A) = min{k, |A|}.

An integral solutionx for (3) necessarily had), 1)-components and corresponds
to a subseX C E that contains no antichain of size larger thaBy the Theorem of
Dilworth [1950], such a subse{ can be covered bl (or less) chains relative to the
orderP on E.

The equality of the optimal objective function values in (3) and (4) now yields
Greene’s Theorem.

O

We would like to extend Theorem 2 to the case wheman be expressed as the
minimum of two submodular functions. The difficulty thereby is that the mattix
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occurring in the proof will in general not be totally unimodular. Therefore, we restrict
the class of orderB under consideration to the class of rooted forests.

We say that a collectiod € A of antichains is a&hainin A if for all A,B € C
eitherid(A) C id(B) orid(B) C id(A) holds. For our next lemma, we consider two
chainsC1 andCz of antichains and the incidence mathkwith rows indexed bye and
columns indexed by = C; U Ca, where

1 ifee A

Mea = {O otherwise.

Lemma 4. Assume that the ordd? is a rooted forest and Il be the incidence matrix
of two chaing’1 and(, of antichains relative td®. ThenM is totally unimodular.

Proof. Assume first thaP is the trivial order with no proper comparabilities. Indexing
the columns ofM in increasing order relative to the cardinality of the member§;of
and in decreasing order relativedg, it is clear thatM has the consecutive 1's property
and, therefore, is totally unimodular.

If P has non-trivial comparabilities, the idea is now to add some row to other rows
of M so that the resulting matrid’ is the incidence matrix relative to an ord@rwith
strictly fewer comparabilities thaR. By induction on the number of comparabilites,
we can then assume thilt’ is totally unimodular. Becauskl can be recovered from
M’ by elementary row operations, alsbmust be totally unimodular.

Choose som& € ET with at least one lower neighbor and lgh, ... , &} be
the set of all lower neighbors & ThenMea = 1 in M implies Mg o = 0 for
i =1,...,k Hence we can add the rozvof M to each of the rowsy, ... , & and

obtain a (0,1)-matriv’.

Let P’ be the order that coincides with on the setE \ e but hase incomparable
with every element irE \ e . BecauseP is a rooted forest, als&’ is a rooted forest
and the elementsy, . .. , ex are maximal relative t&’. Hence, ifA is an antichain in
Pwithee A thenAU {e, ..., &} is an antichain irP’.

Replace now each antichakwithe e AinCi (i = 1, 2) by AU{eq, ... , &}. This
yields two chaing; andC of antichains relative t®’ with incidence matrixv’.

|

Note that Lemma 4 may fail to hold P is not a rooted forest as the following
example demonstrates.

Example.Let PonE = {a, b, c, d, €} be given by the non-trivial order relatioas< b,
anda < c. Consider the two chairg = {ad, bd, bcd} andC> = {ae cde of antichains
and letM be the corresponding incidence matrixylfs the sum of the columns déf,
each component of is an even integer. Sg/2 is integral and

Mx = y/2 , x>0

is feasible but has no integral solution as is straightforward to check.
|

Our next result generalizes the intersection theorem of Edmonds and Giles [1977]
from trivially ordered sets to rooted forests.
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Theorem 3. Let P be a rooted forest with collectiodl of antichains and letf, g :
A — R be submodular. Ifi : A — R satisfiesh(A) = min{ f(A), g(A)} forall A € A,
then (3) and (4) form a totally dual integral pair of linear inequalities.

Proof. We re-write the linear programs as

max c¢'x
st. erg f(A) forall Ac A
ecA

er <g(A) forall Ae A (1)
ecA
Xe < Ue forallee E
Xe > lg forallecE
and
mn  fTy+g'z+u's—1ITt
st. Z YA+ ZA + Se — te =Ceforallec E ®)
Ac A
ec A
y,z,5t > 0.

Let (y*, z*, s*, t*) be an optimal solution for (8). Considering the modified vectors
cy = C—Zz" —s" +t*andc; = ¢ — y* — s* + 1%, we conclude as in the proof of
Theorem 2 that the supports

Ly = {Ae Ay, >0}
L; = {Ae AlZ) >0}
can be assumed to be chains of antichains relative to
Let M be the incidence matrix oE vs. Ly U £,. By Lemma 4,M is totally

unimodular. Hence the theorem follows with exactly the same argument as in the proof

of Theorem 2.
O

4. The core of submodular polyhedra

In this section, we leP be an arbitrary order on the sEtwith family .4 of antichains
and assume that the functidn: A — R is normalizedj.e., f(¥) = 0, submodular
and weakly increasing. So we know that every primally greedy vector is feasible for the
linear prograniP .
In contrast to the situation in classical submodular structiesthe case wher®
is the trivial order orE, different Greedy vectors may have different component sums.

Example.Let E = {a, b, ¢} andP have the only non-trivial order relatidn< c. Define
f(A) = 1forevery non-empty anticha# With respectto the linear extensions= abc
andy = bacof P, we obtain the greedy vectox§ = (0, 1, 0) andx?¥ = (1,0, 1) and
observex™ (E) = 1 < 2 = x¥(E).

|
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Generalizing the notion oftaase polyhedroof a polymatroid (see Fujishige [1991]),
we define theoreof f to be setore( f) of all optimal solutions to the following linear
program

maxXx(E) 9
st. X(A) < f(A) forall Ac A ©)

Note thatcore( f) is a bounded polyhedron. We denotef(E) the componentsum
X(E) for anyx e core( f).

Our aim is to show that the Greedy Algorithm of Sect. 2 can be modified to optimize
any linear objective function overore( f). In the context of thek-chain covering
problem discussed in Sect. 2, our problem here is to determine amdagein covers
of maximal cardinalityone of maximal weight.

The problem of maximizing the linear function' x over core( f) is the linear
programming problentLP;

maxw' x
st. x(A) < f(A) forall Ac A (10)
X(E) = FE).

For any nonnegative parameter valyeve consider the Lagrangian parametrization
L () of our problem:

maxw' x + A(X(E) — F(E))

st. x(A) < f(A) forall Ae A. (11)
Instead ofL (1), we may, equivalently, solve the linear prograf(1) :
maxw(®) ' x (12)

st. X(A) < f(A) forall Ac A,

wherew(1)e = we + A for all e € E. Clearly, every optimal solutior* for LP()) with
x*(E) = F(E) will be an optimal solution for our original problem.

ProblemLP(1) can be solved with the Greedy Algorithm from Sect. 2. The difficulty
is, however, that the solutionthus obtained does not necessarily satisfy the condition
X(E) = F(E). We have to introduce more terminology.

The orderP decomposes into a (uniqugandard partitionof antichains

P=[JP

j=0

with Py := E* andPj := (E\ (PoU...U Pj_1))* for j > 1.

A linear extensiont = e, ey, ... , &, of the elements oE is standardif every
element ofP; occurs after any element &1 for all j > 0, i.e, if 7 respects the
standard partition (the maximal elements come last).

Proposition 1. Assume thaf : A — R s given as above and that the linear extension
T =e6...6,of Eisstandard. Thex” lies incore( f).
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Proof. Relative to the unit weightinge = 1 andx = 0, every standard linear extension
7 is in accordance with the Greedy Algorithm.
|

Returning to the arbitrary weighting, it is straightforward to see that the Greedy
Algorithm can be forced to generate a standard linear extensiois ifarge enough.

Proposition 2. Givenw, there exists a* > 0 such that for all. > A*, the Greedy
Algorithm for DLR(A) generates a standard linear extensiortof

Proof. Chooser* > 3W, whereW = > |we| .

ecE

In the first step, the algorithm will select an elemenin the topmost block, of
the standard partition with smallest weighg, and reduce the weights of the elements
in Po by A* 4+ we,. By the choice of*, the algorithm will proceed to remove all other
elements inPy .

Then an elemerg; in the next blockP; is selected with smallest current reduced
weightwg and the weight of the elements i is reduced by.* + wy, . Because none
of the remaining elements iR, will ever have a reduced weight larger theh the
algorithm will remove all ofP; before proceeding t&, etc

|

In view of the preceding discussion, we may solve the core optimization problem
CLP above as follows.

We choose.* as in Proposition 2 and apply the Greedy AlgorithnbioP(1*). The
latter yields a standard linear extensionThe associated vecta will be an optimal
solution for the problenbP(1*). Becausex™ (E) = F(E) holds,x™ is also an optimal
solution forCLP.

For an actual implementation of the Greedy Algorithm, the validoes not have
to be computed explicitly. Consider the following algorithm.

Modified Greedy Algorithm:

Initialize: X < E ;
Z <« E*T:
T <0
w < w(l);

Iterate:  WHILEX # ¢ DO:
determine some € Z with we minimal ;
T < er;
wa < [wa — we] foralla e Xt;
X <« [X\€];
Z <« [Z\¢€];
IFZ=@THENZ « X*;

Note that, in contrast to the Greedy Algorithm of Sect. 2, the Modified Greedy
Algorithm does not explicitly construct a dual solution but a linear extensiohhe
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variableZ in the algorithm assures thatfollows the standard partition & and hence
will be standard.

For the choice. = 1* the Greedy Algorithm and the Modified Greedy Algorithm
generate the same (standaid)Moreover, the Modified Greedy Algorithm yields the
samern for any choice ofi. Indeed, the size of* only ensures that the Greedy
Algorithm follows the standard partition. Within a block of the standard partition, the
selection of an elemerg is carried out according to the reduced sizgrelative to
the original weightingy and is independent of the size If. So it suffices to run the
Modified Greedy Algorithm withth = O in order to generate the optimal standard linear
arrangement.

We summarize in the following theorem.

Theorem 4. Given w, the Modified Greedy Algorithm generates a standard linear
extensiont of E. Moreover, if f : A — R is submodular weakly increasing, the
associated vectat™ is an optimal solution for the core optimization problem CLP.

|

5. Applications to cooperative game theory

The basic model of cooperative game theory comprises Bl sdétplayersthe subsets
S € N of which arecoalitions There is acharacteristic functiorv : 2N — R that
assigns to each coalitiddits valuev(S). We assume to be normalized,e., v(¥) = 0.
In our presentation here, we will furthermore thinkug® as thecostgenerated bys.
A solution concepis a method to divide the valugN) of the grand coalitiorN, i.e.,
the total cost, among the individual players in a “fair” way.

The concept of thecore of a game goes back to von Neumann and Morgen-
stern [1944] and suggests to allocate a veator RN such that no coalitiorS is
allocated more than its true cosg., such thax(S > v(S does not occur. The core
Core(v) is thus defined to be the polyhedron consisting of all veotar RN that satisfy
the following system of inequalities:

XS <v(§ forallSSC N

X(N) > v(N) . (13)

In a slightly more general model, we assum& be given for a subfamilyf of
essentiakoalitions. Then : £ — R induces the characteristic function 2N — R
via

(S := min { ZU(EJ‘) | Ej €€, E/js partitionS]

J

with the understanding that¥) = 0 andv(S) = oo if Scannot be partitioned into
members of. We call the cooperative gamié, v) arising from(N, &, v) a partition
game

Note thatv is subadditivei.e., SN T = ¢ implies

u(SUT =o(9 + (D).

Moreover,p = v holds if and only ifv is subadditive o€ = 2N. In general, we observe
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Proposition 3. Assume = 2V, Then

B @ if v(N) > B(N)
COfe(U) = {Core(f)) if v(N) = l_)(N) .

It is generally a non-trivial problem to decide whethéN) = v(N) holds.

Example.(Deng and Papadimitriou [1994]). L&tbe an edge-weighted complete graph
on the node sel. For eachS C N, takew(S) to be the sum of the edge-weights in the
subclique induced b and let the value o§ be given byv(S) = w(N) — w(N \ 9.
Thenv(N) = v(N) holds if and only ifG contains no negative cut, whichN-hard to
decide. MoreovelCore(v) # ¢ holds if and only ifu(N) = v(N) .

O

Recall that the classicélalancedness conditiortd Bondareva [1963] exhibit the
Core(v) of a cooperative gameN, v) to be non-empty if and only if for every integer
m € N and subsets§y, ..., Sn of N,

1 . ) 1
EZlS = 1y implies EZU(S) > u(N),

where Xk denotes the characteristic function®f N.

For our purposes, itis important that the balancedness conditions can be replaced by
the simple to state existence condition of an optimal solution intdgral components
for arelated linear program. (This observation implies, for example, also the main result
in Sharkey [1990]). The condition says that the vaigdl) can be computed via the
natural linear programming relaxation.

Theorem 5. Let (N, £, v) be a partition game. Then Cai@® # ¢ if and only if the
following linear program has an integral optimal solution:

min Z v(E)ye
Ee&
st. > ye=1 forallee N (14)
Ese

ye >0 forallEe€€&.
Proof. Consider the associated linear programming d@al

max X(N)

st. X(E) <v(E) forallEc&. (15)

Since each partition dfl into members of yields an (integral) feasible solution for
the linear program in the statement of the theorem, linear programming duality implies
X(N) < v(N) for every feasible solutior for (D).
Hence a feasible solutionfor (D) with x(N) = v(N) exists if and only if a minimal
cost partition ofN corresponds to an optimal linear programming solution.
|
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Corollary 2. If Core(v) # @, then Corév) is exactly the set of optimal solutions for
the linear program

max X(N)

st. X(E) <v(E) forallE€€&. (16)

]

Corollary 3. Assume that the value functienof a game is submodular and weakly
increasing relative to some ordét. Then Corév) # 0 .

Proof. The integrality condition of Theorem 5 is implied by total dual integrality and
the choicec” = (1, ..., 1).
|

For the same reason, games whose value function satisfies the conditions of Theo-
rem 3 are seen to have a non-empty core.

From Corollary 2 and Corollary 3 we conclude that, in the case of submodularity,
the gametheoretic notion @bre coincides with the notion of theore introduced in
Sect. 4. Hence we may employ the Modified Greedy Algorithm of the previous section
in order to compute the optimal core vector relative to a linear “utility functint on
the setN of players.

We illustrate an application of the integrality results of Sect. 3 to a generalization of
the classical assignment games to 3 dimensions. Generalizations to higher dimensions
are then straightforward to obtain.

Example (3d-Assignment Gamiegt N be the set of 8 nodes of the complete 3-partite
graphKnnn and€ the collection of all triplegi, j, k), 1 < i, j,k < n. A (partial)
3d-assignmenis a collectionM C £ of pairwise non-incident triples (with respect to
each of the three components).

Let a cost functiorh : £ — R be given and define theosth(S) of a non-empty
subsetS C N as the cost of a minimal assignment coverfif such an assignment
exists and &” otherwise. Therh defines a partition game dx.

(N, h) need not have a non-empty core. (Otherwise, Theorem 5 would allow us to
compute cost-minimal@assignments via a polynomial linear programming relaxation.
Because the®assignment problem P-complete,P = NP would then follow).

Considering three unrelated copies of the chdin< 2... < n}, one for each
component, we obtain a rooted forésbn N, where each triplé, |, k) corresponds to
a 3-element antichain. Moreovéris closed under the operationsanda relative toP.

Theorem 3 now implies a non-empty core(df, h), wheneveh can be expressed
as the minimum of two submodular functions&n

|

The above example can be cast into the following gametheoretic setting, Bet
and C be three pairwise disjoint sets of “players” wifA| = |B| = |C| = n. The
players are to form teanig, b, ¢) with one member from each set. The “profit” gained
from forming such a team ip(a, b, ¢) > 0. How should the teams be formed and the
total profit be distributed among tha players in the best possible way?
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Consider the associated “cost” functib(a, b, c) = M — p(a, b, ¢), whereM is an
arbitrary constant. An equivalent problem formulation now asks for formitgams
such that the total cost relativeids minimized and the total cost is distributed among
the 3 players in an acceptable way.

If we define “acceptable” via the notion of the core, it is not clear whether an
acceptable cost distribution exists at all. We describe a very special case, where Theorem
3 guarantees the non-emptyness of the core.

Assume tha#\, B, andC can be geometrically represented as points on three parallel
lines inIR? and the points are ordered in the same direction along the lines. Each team
(a, b, ¢) correspondsto a triangle(a, b, c) with verticesa, b, andc on the three lines. If
one associates with each triangléa, b, c) the sumy(a, b, ¢) of the pairwise Euclidean
distances of its vertices.e., its circumference, one obtains a submodular function on
the collection of feasible teams.

If the constanC offers an alternative cost per team (due to another cost scheme for
which a team may opt), then the induced cost function

h(a, b, c) = min{C, ¥(a, b, c, )}

satisfies the conditions of Theorem 3 becaGse submodular on the collection of
triangles.
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