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Abstract. A general ordertheoretic linear programming model for the study of matroid-type greedy algo-
rithms is introduced. The primal restrictions are given by so-called weakly increasing submodular functions on
antichains. The LP-dual is solved by a Monge-type greedy algorithm. The model offers a direct combinatorial
explanation for many integrality results in discrete optimization. In particular, the submodular intersection
theorem of Edmonds and Giles is seen to extend to the case with a rooted forest as underlying structure. The
core of associated polyhedra is introduced and applications to the existence of the core in cooperative game
theory are discussed.
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1. Introduction

The present investigation is motivated by two fundamental questions. The first arises
from cooperative game theory, where so-calledconvexgames (cf. Shapley [1971])
have the attractive property to possess not only a non-emptycore but allow efficient
optimization of linear functions over the core. Can this class of games be extended to
a larger class with the same features?

Cores of convex games are also known asbase polytopesof submodular structures
(cf. Fujishige [1991]), for which the greedy algorithm is known to be a fundamental
algorithmic optimization technique. Extending the work of Queyranneet al. [1993], it
was shown in Faigle and Kern [1996] that the greedy algorithm for polymatroids and
the Monge algorithm for transportation problems with a suitable cost structure are just
algorithmic manifestations of the same primal-dual pair of linear programs involving
submodular constraints and submodular costs respectively that can, more generally, be
defined relative to an underlying order structure given by a rooted forest. Hence the
question arises how this model generalizes to arbitrary (partial) orders.

It turns out that a generalization to arbitrary orders is not possible unless we impose
some restrictions on the class of submodular functions under considerations. We show in
Sect. 2 that a full analog of the fundamental algorithmic properties of the previous models
can be obtained when we restrict ourselves to submodular functions that areweakly
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increasingrelative to the underlying order structure. In Sect. 3, we derive integrality
properties for the pairs of submodular linear programs, which offer the (primal and dual)
greedy algorithm as an explanation for many min-max properties of discrete structures.
In particular, we extend the Intersection Theorem of Edmonds and Giles [1977] from
unordered ground sets to rooted forests.

The core of a submodular structure is introduced in Sect. 4. In contrast to the
situation with (unordered) polymatroids, “maximal” feasible vectors may have different
component sums. By definition, the core consists of the feasible vectors of maximal
component sum. It can be shown that the greedy algorithm can be modified to optimize
arbitrary linear functions over the core relative to a weakly increasing submodular
function.

We discuss the relationship with the core of cooperative games in Sect. 5. Taking
a different look than suggested by Bondareva’s [1963] and Shapley’s [1967]balanced-
ness conditionswe are able to tie the existence of the core of an (arbitrary) cooperative
game to the integrality of an LP-relaxation of a natural partitioning problem for the
groundset of “players”. The special case of an order structure with a submodular func-
tion on the collection of antichains then yields a far-reaching extension of the classical
convex games.

2. A Greedy Algorithm for a class of submodular programs

In this section, we extend the model of Faigle and Kern [1996] to a wider class of
structures and show that the same greedy algorithm works optimally.

Let E be a (finite) set and consider the (partial) orderP = (E,≤). With anyS⊆ E
we associate theideal generated bySvia

id(S) := {x ∈ E | x ≤ s for somes ∈ S}.

Denoting byS+ the collection of maximal elements of the orderP restricted toS,
we note thatS+ is anantichain, i .e., a subset of pairwise incomparable elements, and
that every antichainA arises asA= (id(A))+. So we can define two binary operations
on the setA of antichains by setting forA, B ∈ A,

A∨ B := (id(A) ∪ id(B))+

A∧ B := (id(A) ∩ id(B))+ .

We remark that(A,∨,∧) is adistributive lattice(see,e.g., Birkhoff [1967]).
Let f : A → R be given. Throughout our investigations we will assume thatf

is normalized, i .e., f(∅) = 0. Let furthermorec : E → R be a weighting ofE and
consider both the linear programLP:

maxcT x
s.t. x(A) ≤ f(A) for all A ∈ A, (1)
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where we use the shorthand notationx(A) =∑e∈A xe for vectorsx ∈ RE, and its dual
DLP:

min
∑
A∈A

f(A)yA

s.t.
∑
A3e

yA = ce for all e∈ E

yA ≥ 0 for all A ∈ A.

(2)

It is straightforward to see that the following algorithm yields a feasible solution for
DLP (cf. Faigle and Kern [1996]).

(Dual) Greedy Algorithm:

Initialize: yA← 0 for all A ∈ A ;
X← E ;
w← c ;
π ← ∅ ;

Iterate: WHILEX 6= ∅ DO:
determine somee∈ X+ with we minimal ;
yX+ ← we ;
π ← eπ ;
wa ← [wa −we] for all a ∈ X+ ;
X ← [X \ e] ;

A run of the Greedy Algorithm will produce a linear extension

π = e1e2 . . .en

of P, namely the reverse order in which the algorithm discards the elements ofE. (Recall
that alinear extensionof P is a permutationπ = e1e2 . . .en of the groundsetE such
thatei ≤ ej in P impliesi ≤ j ).

With the linear extensionπ we associate theprimally greedyvector xπ as the
(unique) vectorx ∈ RE satisfying fori = 1, . . . ,n,

x(E+i ) = f(E+i ) ,

whereEi = {e1,e2, . . . ,ei }.
Denoting byy the greedy solution vector forDLP and letting the vectorxπ be

defined as above, it follows that

cT xπ = f T y .

Hence bothxπ and y are optimal solutions for the linear programsLP andDLP
wheneverxπ is a feasible solution forLP. We will now introduce a class of structural
constraints relative to which feasibility ofxπ can be proved.

The function f : A→ R is said to besubmodularor concave(relative toP) if for
all A, B ∈ A,

f(A∨ B)+ f(A∧ B) ≤ f(A)+ f(B).



486 Ulrich Faigle, Walter Kern

In order to illustrate this concept of concavity, consider the complete bipartite graph
Kn,n with nonnegative costsc(i , j) on the edges(i , j). Recall that the costs are said to
have theMonge property(cf. Burkardet al. [1996]) if for all i1, i2 and j1, j2,

c(i1 ∨ i2, j1 ∨ j2)+ c(i1 ∧ i2, j1 ∧ j2) ≤ c(i1, j1)+ c(i2, j2) ,

where we set for any two integerss, t ∈ N,

s∨ t := max{s, t}
s∧ t := min{s, t} .

It is straightforward to check that in this model of edge-weighted bipartite graphs the
Monge property amounts exactly to the concavity of the cost function on the 2-element
antichains. Furthermore, it is easy to extend the cost function with Monge property to
a concave function defined forall antichains. For example, we may choose a constantM
larger than any edge cost and assign to the singleton with indexi the costc(i) = i · M.

Remark.In the special case where the orderP is a union of pairwise disjoint linear
orders, our model is essentially the submodular model of Queyranneet al. [1993].

ut
Remark.A function f is supermodular(a.k.a. “convex”) if (− f ) is submodular. Iff
is defined for all subsets ofE and f(∅) = 0 holds, thenf ∗(S) = f(E)− f(E \ S) gives
rise to a functionf ∗ such that( f ∗)∗ = f . Moreover, f is convex if and only if f ∗ is
concave.

Reversing the inequalities appropriately, it is straightforward to see that one may
obtain a theory for cores associated with supermodular functions that is completely
analogous to our submodular model here. Cooperative game theory traditionally prefers
the model ofconvexgames (where a “profit” is to be allocated) to the concave “cost”
model (see Shapley [1971]). It is not difficult to verify that the “concave core” off
equals the “convex core” relative tof ∗.

ut
Unfortunately, submodularity off is not necessarily sufficient to guarantee feas-

ibility of xπ (cf. Example 4.1 in Faigle and Kern [1996]). We requiref to satisfy an
additional condition.

Recall thatb ∈ E is anupper neighborof a ∈ E relative toP if a < b holds in P
and there is noc ∈ E with a < c < b. We say that the functionf : A→ R is weakly
increasingif for everye∈ E with at least 2 upper neighbors relative toP the following
property holds:

A∪ e∈ A implies f(A∪ e) ≥ f(A) .

For example,f is trivially weakly increasing if every element ofE has at most
one upper neighbor relative toP (which is the defining property of therooted forests
investigated in Faigle and Kern [1996]).

For our feasiblity proof, we need a technical lemma. So, for some minimal element
e ∈ E, consider the induced orderP′ = P \ {e} on the ground setE′ = E \ {e} and
denote byA′ the collection of antichains ofP′. We define the functionf ′ : A′ → R via

f ′(A) :=
{

f(A∪ e)− f(e) if A∪ e ∈ A
f(A) otherwise.
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Lemma 1. Assume thatf : A → R is submodular and weakly increasing, and let
e ∈ E be a minimal element with respect toP. Then also f ′ : A′ → R is weakly
increasing and submodular.

Proof. The minimality ofe and the submodularity off together immediately imply
f(A) ≥ f ′(A) for all A ∈ A′. Hence it is straightforward to see thatf ′ is weakly
increasing. We want to show thatf ′ is submodular.

Let A, B ∈ A′ be arbitrary antichains. IfA∪ e was an antichain relative toP, then
also(A∧ B) ∪ e was inA. Moreover,(A∨ B) ∪ e was an antichain inP if and only if
B ∪ e was an antichain. So in either case,f ′ satisfies the submodular inequality forA
andB becausef was submodular.

We may therefore assume that neitherA∪ enor B∪ e (and hence nor(A∨ B) ∪ e)
are antichains inP. If also (A∧ B) ∪ e was no antichain,f ′ coincides with f relative
to (A, B) and submodularity follows.

Consider finally the case where(A∧ B)∪ ewas indeed an antichain inP. This can
only mean that(A∧ B)∪ e is precisely the infimum ofA andB relative to the latticeA
of antichains. So the submodularity off yields under the present conditions

f ′(A∨ B)+ f((A∧ B) ∪ e) ≤ f ′(A)+ f ′(B) .

It suffices now to show thatf ′(A ∧ B) ≤ f((A ∧ B) ∪ e), i .e., f(e) ≥ 0, holds.
To this end, we note that under the present conditions the elemente necessarily must
have at least 2 upper neighbors. (Ife had only one upper neighbore′, say,e′ would be
dominated by members of bothA andB andA∧ B∪ewould be no antichain). Because
f is weakly increasing, we thus conclude thatf(e) ≥ f(∅) = 0, as required.

ut
Theorem 1. Assume thatf : A→ R is submodular and weakly increasing, and letπ

be a linear extension ofE relative to the orderP = (E,≤). Then the vectorxπ satisfies
for all A ∈ A,

x(A) ≤ f(A) .

Proof. We proceed by induction on the size|E| of the underlying ground setE. Note
thatπ ′ = e2,e3, . . . ,en is a linear extension ofP′ wheneverπ = e1,e2, . . . ,en is
a linear extension ofP.

Fix the minimal elemente1 and define the functionf ′ as in Lemma 1 relative to
e= e1. By induction, we may assume for allA ∈ A′,

xπ
′
(A) ≤ f ′(A) .

By construction, we havexπ = ( f(e1), xπ
′
). Hence

xπ(A) ≤ f(A)

must hold for allA ∈ A.
ut

Corollary 1. If f is submodular and weakly increasing, then the greedy algorithm
solves the linear programs LP and DLP optimally.

ut
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Remark.The construction of the vectorxπ reduces to the greedy algorithm of Edmonds
[1970] in the case of a trivial orderP (see also Ichishi [1981]). In the general case,
however, it isnot “greedy” in the sense that it would build up a linear extensionxπ

by successively adjoining elements with largest possible weights. In fact, such a naive
“greedy algorithm” does not work (cf. the next example). Our greedy algorithm is
motivated rather by the well-knownNW-corner ruleor Monge greedy algorithmfor the
bipartite assignment problem (cf. Burkardet al. [1994]).

ut
Example.Consider the setE = {a,b, c,d} and orderP with the only non-trivial order
relationsa < d andb < c. LetA consist of all antichains ofP and definef : A→ R
by f(∅) = 0 and f(A) = 1 otherwise.

Relative to the weightingwa = 5, wb = 4, wc = 3, wd = 1, the “naive” greedy
algorithm would construct the linear extensionπ = abcdwith associated vectorxπ =
(1,0,0,1). The linear extensionψ = bacd, however, yields a better vectorxψ =
(0,1,1,0).

ut
It is not difficult to extend our model to more general familiesA of antichains that

are closed under the operations∨ and∧ as follows.
Let D denote the family ofall ideals ofP and letL ⊆ D be a subfamily that is

closed under union and intersection. Set

A(L) := {L+ | L ∈ L} .
Note thatA(L) is closed under∨ and∧. If the corresponding linear programLP(L)
has an optimal solution at all, we may assume w.l.o.g. that each element ofE occurs in
some antichain inA(L) (thus, in particular,E ∈ L).

Let us say that the elementse, f ∈ E areequivalent(e∼ f ) (relative toA(L)) if
for everyA ∈ A(L), e∈ A holds exactly whenf ∈ A is true. Set

[e] := { f ∈ E | f ∼ e}.
Lemma 2. For all e∈ E+, E \ [e] ∈ L .

Proof. Observe that[e] ⊆ E+ holds. ThusE \ [e] is an ideal inP (and hence a member
of D).

Suppose there exists someL ∈ L that properly containsE \ [e]. Then there must
exist somef ∈ [e] with f ∈ L. Becausef ∈ L+, we conclude[e] ⊆ L, i .e., L = E.
So E \ [e] is the intersection of all members ofL containing it and, therefore, also itself
a member ofL.

ut
Lemma 3. If max{∑ cexe | x(A) ≤ f(A) for all A ∈ A(L)} is bounded, thence = c f

whenevere∼ f .
ut

Arguing with the equivalence classes[e] instead of the elementse, Lemmas 2 and 3
now allow us to derive the analog of Lemma 1 and Theorem 1 in the same way.
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3. Intersection of submodular structures

In this section, we will investigate integrality properties of linear programs that are
defined by submodular functions on antichains or functions that are expressible as
minima of pairs of submodular functions. We also allow for lower and upper bounds
l,u : E→ R ∪ {−∞,∞} on primally feasible vectors.

Let P = (E,≤) be an ordered set and denote byA the collection of all antichains.
(We remark here that it suffices to requireA just to be a collection of antichains that is
closed under the operations∨ and∧).

Consider an arbitrary functionh : R→ A, with h(∅) = 0, together with a weighting
c ∈ RE. As in the previous section, we are interested in the linear program

max cT x

s.t.
∑
e∈A

xe ≤ h(A) for all A ∈ A
xe ≤ ue for all e∈ E
xe ≥ le for all e∈ E

(3)

and its dual

min hT y + uTs− l T t

s.t.
∑

A ∈A
e∈ A

yA + se − te = ce for all e∈ E

y, s, t ≥ 0 .

(4)

Say that the linear inequalities that occur as constraints in (3) and the linear inequal-
ities occurring as constraints in (4) form atotally dual integralpair of linear inequalities
provided the following is true: the maximum in (3) is achieved by an integral vectorx
if l,u andh are integral and, furthermore, the minimum in (4) is attained by an integral
vector(y, s, t) if c is integral (provided both linear programs are feasible).

Theorem 2. Assume thath is submodular and weakly increasing. Then (3) and (4) form
a totally dual integral pair.

Proof. Let (y∗, s∗, t∗) be an optimal solution of (4) and consider the linear program

min hTu

s.t.
∑

A ∈A
e∈ A

uA = c∗e for all e∈ E

u ≥ 0,

(5)

wherec∗ = c− s∗ + t∗.
By the results of the previous section, (5) can be solved by the (dual) greedy

algorithm. So we can assume thaty∗, in fact, is this solution. Set

L := {A ∈ A | y∗A > 0} .
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Problem (5) now is equivalent to

min
∑
A∈L

h(A)yA

s.t.
∑
A ∈ L
e∈ A

yA + se − te = ce for all e∈ E

y, s, t ≥ 0.

(6)

If L = {A1, . . . , Ak}, we may assumeid(Ai ) ⊂ id(Aj ) for i < j . From this, it is
easy to see that the matrixM with rows indexed byE and columns indexed byL such
that

Me,A =
{

1 if e∈ A
0 otherwise

has theconsecutive1’s property, i .e., in each row ofM the 1’s occur consecutively. Such
a matrix is well-known to be totally unimodular (see,e.g., Schrijver [1986, p.279]).
(Recall that a matrix is said to betotally unimodularif the determinant of every square
submatrix takes on a value in{0,−1,1}.)

BecauseM is totally unimodular and the columns associated with the variabless
and t correspond to identity matrices, it is clear that the constraints of (6) are totally
unimodular. Hence (6) and, therefore, (5) has an integral optimal solution ifc is an
integral vector.

Finally, if l,u and h are integral, our argument shows that the optimal objective
function value of (5) and, by linear programming duality, of (3) is an integer whenever
c is integral. By Theorem (2.9) of Hoffman [1982], the latter implies that the vertices of
the feasibility region of the linear program (3) are integral, which yields the theorem.

ut
Theorem 2 allows us, for example, to derive the Theorem of Greene [1976] in the

same spirit as in Hoffman [1982]:

Example.For every fixedk ∈ N, the functionh(A) = k for A 6= ∅ is submodular and
(trivially) weakly increasing on the collection of antichains. Consider the case where
ce = 1, le = 0, andue = 1 for all e∈ E.

By Theorem 2, (4) has an optimal integral solution. It is clear that this solution must
have(0,1)-components and thus corresponds to a partition ofE into antichains that is
minimal relative to the weight functiondk(A) = min{k, |A|}.

An integral solutionx for (3) necessarily has(0,1)-components and corresponds
to a subsetX ⊆ E that contains no antichain of size larger thank. By the Theorem of
Dilworth [1950], such a subsetX can be covered byk (or less) chains relative to the
orderP on E.

The equality of the optimal objective function values in (3) and (4) now yields
Greene’s Theorem.

ut
We would like to extend Theorem 2 to the case whereh can be expressed as the

minimum of two submodular functions. The difficulty thereby is that the matrixM
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occurring in the proof will in general not be totally unimodular. Therefore, we restrict
the class of ordersP under consideration to the class of rooted forests.

We say that a collectionC ⊆ A of antichains is achain in A if for all A, B ∈ C
either id(A) ⊆ id(B) or id(B) ⊆ id(A) holds. For our next lemma, we consider two
chainsC1 andC2 of antichains and the incidence matrixM with rows indexed byE and
columns indexed byL = C1 ∪ C2, where

Me,A =
{

1 if e∈ A
0 otherwise.

Lemma 4. Assume that the orderP is a rooted forest and letM be the incidence matrix
of two chainsC1 andC2 of antichains relative toP. ThenM is totally unimodular.

Proof. Assume first thatP is the trivial order with no proper comparabilities. Indexing
the columns ofM in increasing order relative to the cardinality of the members ofC1
and in decreasing order relative toC2, it is clear thatM has the consecutive 1’s property
and, therefore, is totally unimodular.

If P has non-trivial comparabilities, the idea is now to add some row to other rows
of M so that the resulting matrixM′ is the incidence matrix relative to an orderP′ with
strictly fewer comparabilities thanP. By induction on the number of comparabilites,
we can then assume thatM′ is totally unimodular. BecauseM can be recovered from
M′ by elementary row operations, alsoM must be totally unimodular.

Choose somee ∈ E+ with at least one lower neighbor and let{e1, . . . ,ek} be
the set of all lower neighbors ofe. Then Me,A = 1 in M implies Mei ,A = 0 for
i = 1, . . . , k. Hence we can add the rowe of M to each of the rowse1, . . . ,ek and
obtain a (0,1)-matrixM′.

Let P′ be the order that coincides withP on the setE \ e but hase incomparable
with every element inE \ e . BecauseP is a rooted forest, alsoP′ is a rooted forest
and the elementse1, . . . ,ek are maximal relative toP′. Hence, ifA is an antichain in
P with e∈ A, thenA∪ {e1, . . . ,ek} is an antichain inP′.

Replace now each antichainA with e∈ A in Ci (i = 1,2) by A∪ {e1, . . . ,ek}. This
yields two chainsC′1 andC′2 of antichains relative toP′ with incidence matrixM′.

ut
Note that Lemma 4 may fail to hold ifP is not a rooted forest as the following

example demonstrates.

Example.Let P on E = {a,b, c,d,e} be given by the non-trivial order relationsa< b,
anda< c . Consider the two chainsC1 = {ad,bd,bcd}andC2 = {ae, cde} of antichains
and letM be the corresponding incidence matrix. Ifγ is the sum of the columns ofM,
each component ofγ is an even integer. Soγ/2 is integral and

Mx = γ/2 , x ≥ 0

is feasible but has no integral solution as is straightforward to check.
ut

Our next result generalizes the intersection theorem of Edmonds and Giles [1977]
from trivially ordered sets to rooted forests.
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Theorem 3. Let P be a rooted forest with collectionA of antichains and letf, g :
A→ R be submodular. Ifh : A→ R satisfiesh(A) = min{ f(A), g(A)} for all A ∈ A,
then (3) and (4) form a totally dual integral pair of linear inequalities.

Proof. We re-write the linear programs as

max cT x

s.t.
∑
e∈A

xe ≤ f(A) for all A ∈ A∑
e∈A

xe ≤ g(A) for all A ∈ A
xe ≤ ue for all e∈ E
xe ≥ le for all e∈ E

(7)

and

min f T y + gTz+ uTs− l T t

s.t.
∑

A ∈A
e∈ A

yA + zA + se − te = ce for all e∈ E (8)

y, z, s, t ≥ 0 .

Let (y∗, z∗, s∗, t∗) be an optimal solution for (8). Considering the modified vectors
c∗y = c− z∗ − s∗ + t∗ andc∗z = c− y∗ − s∗ + t∗, we conclude as in the proof of
Theorem 2 that the supports

Ly = {A ∈ A | y∗A > 0}
Lz = {A ∈ A | z∗A > 0}

can be assumed to be chains of antichains relative toP.
Let M be the incidence matrix ofE vs. Ly ∪ Lz. By Lemma 4,M is totally

unimodular. Hence the theorem follows with exactly the same argument as in the proof
of Theorem 2.

ut

4. The core of submodular polyhedra

In this section, we letP be an arbitrary order on the setE with family A of antichains
and assume that the functionf : A → R is normalized,i .e., f(∅) = 0, submodular
and weakly increasing. So we know that every primally greedy vector is feasible for the
linear programLP .

In contrast to the situation in classical submodular structures,i .e., the case whereP
is the trivial order onE, different Greedy vectors may have different component sums.

Example.Let E = {a,b, c} andP have the only non-trivial order relationb< c. Define
f(A) = 1 for every non-empty antichainA. With respect to the linear extensionsπ = abc
andψ = bacof P, we obtain the greedy vectorsxπ = (0,1,0) andxψ = (1,0,1) and
observexπ(E) = 1< 2= xψ(E).

ut
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Generalizing the notion of abase polyhedronof a polymatroid (see Fujishige [1991]),
we define thecoreof f to be setcore( f ) of all optimal solutions to the following linear
program

max x(E)
s.t. x(A) ≤ f(A) for all A ∈ A (9)

Note thatcore( f ) is a bounded polyhedron. We denote byF(E) the component sum
x(E) for anyx ∈ core( f ).

Our aim is to show that the Greedy Algorithm of Sect. 2 can be modified to optimize
any linear objective function overcore( f ). In the context of thek-chain covering
problem discussed in Sect. 2, our problem here is to determine among allk-chain covers
of maximal cardinalityone of maximal weight.

The problem of maximizing the linear functionwT x over core( f ) is the linear
programming problemCLP:

maxwT x
s.t. x(A) ≤ f(A) for all A ∈ A

x(E) = F(E) .
(10)

For any nonnegative parameter valueλ, we consider the Lagrangian parametrization
L(λ) of our problem:

maxwT x+ λ(x(E)− F(E))
s.t. x(A) ≤ f(A) for all A ∈ A.

(11)

Instead ofL(λ), we may, equivalently, solve the linear programLP(λ) :

maxw(λ)T x
s.t. x(A) ≤ f(A) for all A ∈ A, (12)

wherew(λ)e = we+ λ for all e∈ E. Clearly, every optimal solutionx∗ for LP(λ) with
x∗(E) = F(E) will be an optimal solution for our original problem.

ProblemLP(λ) can be solved with the Greedy Algorithm from Sect. 2. The difficulty
is, however, that the solutionx thus obtained does not necessarily satisfy the condition
x(E) = F(E). We have to introduce more terminology.

The orderP decomposes into a (unique)standard partitionof antichains

P =
⋃
j≥0

Pj

with P0 := E+ andPj := (E \ (P0 ∪ . . . ∪ Pj−1))
+ for j ≥ 1.

A linear extensionπ = e1,e2, . . . ,en of the elements ofE is standardif every
element ofPj occurs after any element ofPj+1 for all j ≥ 0, i .e., if π respects the
standard partition (the maximal elements come last).

Proposition 1. Assume thatf : A→ R is given as above and that the linear extension
π = e1e2 . . .en of E is standard. Thenxπ lies in core( f ).
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Proof. Relative to the unit weightingwe = 1 andλ = 0, every standard linear extension
π is in accordance with the Greedy Algorithm.

ut
Returning to the arbitrary weightingw, it is straightforward to see that the Greedy

Algorithm can be forced to generate a standard linear extension ifλ is large enough.

Proposition 2. Givenw, there exists aλ∗ ≥ 0 such that for allλ ≥ λ∗, the Greedy
Algorithm for DLP(λ) generates a standard linear extension ofE.

Proof. Chooseλ∗ ≥ 3 W, whereW =
∑
e∈E

|we| .
In the first step, the algorithm will select an elementen in the topmost blockP0 of

the standard partition with smallest weightwen and reduce the weights of the elements
in P0 by λ∗ + wen . By the choice ofλ∗, the algorithm will proceed to remove all other
elements inP0 .

Then an elementei in the next blockP1 is selected with smallest current reduced
weightw′ei

and the weight of the elements inP1 is reduced byλ∗ + w′ei
. Because none

of the remaining elements inP1 will ever have a reduced weight larger thanW, the
algorithm will remove all ofP1 before proceeding toP2 etc.

ut
In view of the preceding discussion, we may solve the core optimization problem

CLP above as follows.
We chooseλ∗ as in Proposition 2 and apply the Greedy Algorithm toDLP(λ∗). The

latter yields a standard linear extensionπ. The associated vectorxπ will be an optimal
solution for the problemLP(λ∗). Becausexπ(E) = F(E) holds,xπ is also an optimal
solution forCLP.

For an actual implementation of the Greedy Algorithm, the valueλ∗ does not have
to be computed explicitly. Consider the following algorithm.

Modified Greedy Algorithm:

Initialize: X← E ;
Z← E+ ;
π ← ∅ ;
w← w(λ);

Iterate: WHILEX 6= ∅ DO:
determine somee∈ Z with we minimal ;
π ← eπ ;
wa ← [wa −we] for all a ∈ X+;
X ← [X \ e] ;
Z ← [Z \ e] ;
IF Z = ∅ THEN Z← X+ ;

Note that, in contrast to the Greedy Algorithm of Sect. 2, the Modified Greedy
Algorithm does not explicitly construct a dual solution but a linear extensionπ. The
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variableZ in the algorithm assures thatπ follows the standard partition ofP and hence
will be standard.

For the choiceλ = λ∗ the Greedy Algorithm and the Modified Greedy Algorithm
generate the same (standard)π. Moreover, the Modified Greedy Algorithm yields the
sameπ for any choice ofλ. Indeed, the size ofλ∗ only ensures that the Greedy
Algorithm follows the standard partition. Within a block of the standard partition, the
selection of an elemente is carried out according to the reduced sizew′e relative to
the original weightingw and is independent of the size ofλ∗. So it suffices to run the
Modified Greedy Algorithm withλ = 0 in order to generate the optimal standard linear
arrangementπ.

We summarize in the following theorem.

Theorem 4. Givenw, the Modified Greedy Algorithm generates a standard linear
extensionπ of E. Moreover, if f : A → R is submodular weakly increasing, the
associated vectorxπ is an optimal solution for the core optimization problem CLP.

ut

5. Applications to cooperative game theory

The basic model of cooperative game theory comprises a setN of playersthe subsets
S ⊆ N of which arecoalitions. There is acharacteristic functionv : 2N → R that
assigns to each coalitionS its valuev(S). We assumev to be normalized,i .e., v(∅) = 0.
In our presentation here, we will furthermore think ofv(S) as thecostgenerated byS.
A solution conceptis a method to divide the valuev(N) of the grand coalitionN, i .e.,
the total cost, among the individual players in a “fair” way.

The concept of thecore of a game goes back to von Neumann and Morgen-
stern [1944] and suggests to allocate a vectorx ∈ RN such that no coalitionS is
allocated more than its true cost,i .e., such thatx(S) > v(S) does not occur. The core
Core(v) is thus defined to be the polyhedron consisting of all vectorsx ∈ RN that satisfy
the following system of inequalities:

x(S) ≤ v(S) for all S⊆ N
x(N) ≥ v(N) . (13)

In a slightly more general model, we assumev to be given for a subfamilyE of
essentialcoalitions. Thenv : E → R induces the characteristic functionv̄ : 2N → R
via

v̄(S) := min
{∑

j

v(Ej ) | Ej ∈ E, E′j s partitionS
}

with the understanding thatv̄(∅) = 0 andv̄(S) = ∞ if S cannot be partitioned into
members ofE . We call the cooperative game(N, v̄) arising from(N, E, v) a partition
game.

Note thatv̄ is subadditive, i .e., S∩ T = ∅ implies

v̄(S∪ T) ≤ v̄(S)+ v̄(T) .
Moreover,̄v = v holds if and only ifv is subadditive onE = 2N. In general, we observe
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Proposition 3. AssumeE = 2N. Then

Core(v) =
{ ∅ if v(N) > v̄(N)

Core(v̄) if v(N) = v̄(N) .
ut

It is generally a non-trivial problem to decide whetherv(N) = v̄(N) holds.

Example.(Deng and Papadimitriou [1994]). LetG be an edge-weighted complete graph
on the node setN. For eachS⊆ N, takew(S) to be the sum of the edge-weights in the
subclique induced byS and let the value ofS be given byv(S) = w(N) − w(N \ S).
Thenv(N) = v̄(N) holds if and only ifG contains no negative cut, which isNP-hard to
decide. Moreover,Core(v) 6= ∅ holds if and only ifv(N) = v̄(N) .

ut
Recall that the classicalbalancedness conditionsof Bondareva [1963] exhibit the

Core(v) of a cooperative game(N, v) to be non-empty if and only if for every integer
m ∈ N and subsetsS1, . . . , Sm of N,

1

m

∑
i

1Si = 1N implies
1

m

∑
i

v(Si ) ≥ v(N) ,

where 1S denotes the characteristic function ofS⊆ N.
For our purposes, it is important that the balancedness conditions can be replaced by

the simple to state existence condition of an optimal solution withintegralcomponents
for a related linear program. (This observation implies, for example, also the main result
in Sharkey [1990]). The condition says that the valuev̄(N) can be computed via the
natural linear programming relaxation.

Theorem 5. Let (N, E, v) be a partition game. Then Core(v̄) 6= ∅ if and only if the
following linear program has an integral optimal solution:

min
∑
E∈E

v(E)yE

s.t.
∑
E3e

yE = 1 for all e∈ N

yE ≥ 0 for all E ∈ E .

(14)

Proof. Consider the associated linear programming dual(D):

max x(N)
s.t. x(E) ≤ v(E) for all E ∈ E . (15)

Since each partition ofN into members ofE yields an (integral) feasible solution for
the linear program in the statement of the theorem, linear programming duality implies
x(N) ≤ v̄(N) for every feasible solutionx for (D).

Hence a feasible solutionx for (D)with x(N) = v̄(N) exists if and only if a minimal
cost partition ofN corresponds to an optimal linear programming solution.

ut
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Corollary 2. If Core(v̄) 6= ∅, then Core(v̄) is exactly the set of optimal solutions for
the linear program

max x(N)
s.t. x(E) ≤ v(E) for all E ∈ E . (16)

ut
Corollary 3. Assume that the value functionv of a game is submodular and weakly
increasing relative to some orderP. Then Core(v̄) 6= ∅ .
Proof. The integrality condition of Theorem 5 is implied by total dual integrality and
the choicecT = (1, . . . ,1).

ut
For the same reason, games whose value function satisfies the conditions of Theo-

rem 3 are seen to have a non-empty core.
From Corollary 2 and Corollary 3 we conclude that, in the case of submodularity,

the gametheoretic notion ofcore coincides with the notion of thecore introduced in
Sect. 4. Hence we may employ the Modified Greedy Algorithm of the previous section
in order to compute the optimal core vector relative to a linear “utility function”cT x on
the setN of players.

We illustrate an application of the integrality results of Sect. 3 to a generalization of
the classical assignment games to 3 dimensions. Generalizations to higher dimensions
are then straightforward to obtain.

Example (3d-Assignment Game).Let N be the set of 3n nodes of the complete 3-partite
graphKn,n,n andE the collection of all triples(i , j, k), 1 ≤ i , j, k ≤ n. A (partial)
3d-assignmentis a collectionM ⊆ E of pairwise non-incident triples (with respect to
each of the three components).

Let a cost functionh : E → R be given and define thecost h̄(S) of a non-empty
subsetS⊆ N as the cost of a minimal assignment coveringS if such an assignment
exists and “∞” otherwise. Then̄h defines a partition game onN.

(N, h̄) need not have a non-empty core. (Otherwise, Theorem 5 would allow us to
compute cost-minimal 3d-assignments via a polynomial linear programming relaxation.
Because the 3d-assignment problem isNP-complete,P = NP would then follow).

Considering three unrelated copies of the chain{1 < 2 . . . < n}, one for each
component, we obtain a rooted forestP on N, where each triple(i , j, k) corresponds to
a 3-element antichain. Moreover,E is closed under the operations∨ and∧ relative toP.

Theorem 3 now implies a non-empty core of(N, h̄), wheneverh can be expressed
as the minimum of two submodular functions onE .

ut
The above example can be cast into the following gametheoretic setting. LetA,B,

and C be three pairwise disjoint sets of “players” with|A| = |B| = |C| = n. The
players are to form teams(a,b, c) with one member from each set. The “profit” gained
from forming such a team isp(a,b, c) ≥ 0. How should the teams be formed and the
total profit be distributed among the 3n players in the best possible way?



498 Ulrich Faigle, Walter Kern

Consider the associated “cost” functionh(a,b, c) = M − p(a,b, c), whereM is an
arbitrary constant. An equivalent problem formulation now asks for formingn teams
such that the total cost relative toh is minimized and the total cost is distributed among
the 3n players in an acceptable way.

If we define “acceptable” via the notion of the core, it is not clear whether an
acceptable cost distribution exists at all. We describe a very special case, where Theorem
3 guarantees the non-emptyness of the core.

Assume thatA, B, andC can be geometrically represented as points on three parallel
lines inR2 and the points are ordered in the same direction along the lines. Each team
(a,b, c) corresponds to a triangle1(a,b, c)with verticesa, b, andc on the three lines. If
one associates with each triangle1(a,b, c) the sumγ(a,b, c) of the pairwise Euclidean
distances of its vertices,i .e., its circumference, one obtains a submodular function on
the collection of feasible teams.

If the constantC offers an alternative cost per team (due to another cost scheme for
which a team may opt), then the induced cost function

h(a,b, c) = min{C, γ(a,b, c, )}
satisfies the conditions of Theorem 3 becauseC is submodular on the collection of
triangles.
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