Skip to main content
Log in

Strengthening the Lovász bound for graph coloring

  • Published:
Mathematical Programming Submit manuscript

Abstract

The Lovász θ-number is a way to approximate the independence number of a graph, but also its chromatic number. We express the Lovász bound as the continuous relaxation of a discrete Lovász θ-number which we derive from Karger et al.’s formulation, and which is equal to the chromatic number. We also give another relaxation à la Schrijver-McEliece, which is better than the Lovász θ-number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizadeh, F., Haeberly, J.-P., Nayakkankuppam, M.V., Overton, M.L. (1997): SDPPack User’s Guide, version 0.8 beta. Technical report, NYU Computer Science Dpt, March 1997. URL: http://www.cs.nyu.edu/phd_students/madhu/sdppack/sdppack.html

  2. Alon, N. (1994): Explicit Ramsey graphs and orthonormal labelings. Electron. J. Comb. 1, # R12

  3. Alon, N., Kahale, N. (1998): Approximating the independence number via the θ-function. Math. Program. 80, 253–264

    Article  Google Scholar 

  4. Feige, U., Kilian, J. (1996): Zero Knowledge and the Chromatic Number. In: Proceedings of the 11th Annual IEEE Conference in Computing Complexity (preliminary version), pp. 278–287

  5. Frieze, A., Jerrum, M. (1995): Improved approximation algorithms for MAX k-cut and MAX BISECTION. In: Proceedings of the Fourth MPS Conference on Integer Programming and Combinatorial Optimization. Springer

  6. Goemans, M.X., Williamson, D.P. (1995): Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. J. ACM 42, 1115–1145

    Article  MATH  Google Scholar 

  7. Horn, R.A., Johnson, C.R. (1985): Matrix Analysis. Cambridge University Press, Cambridge (reedited 1999)

  8. Jensen, T.R., Toft, B. (1995): Graph coloring problems. Wiley-Interscience series in discrete mathematics and optimization. Wiley, New York

  9. Karger, D., Motwani, R., Sudan, M. (1998): Approximate graph coloring by semidefinite programming. J. ACM 45 (2), 246–265, March 1998

    Article  MATH  Google Scholar 

  10. Knuth, D. (1994): The Sandwich Theorem. Electron. J. Comb. 1, # A1, 48 pp.

  11. Lemaréchal, C., Oustry, F. (1999): Semidefinite relaxations and Lagrangian duality with application to combinatorial optimization. Rapport de Recherche Nr. 3710. Inria

  12. Lovász, L. (1979): On the Shannon Capacity of a Graph. IEEE Trans. Inf. Theory IT-25 (1), 1–7

    Google Scholar 

  13. Lund, C., Yannakakis, M. (1994): On the hardness of approximating minimization problems. J. ACM 41 (5), 960–981

    Article  MATH  Google Scholar 

  14. McEliece, R.J., Rodemich, E.R., Rumsey Jr., H.C. (1978): The Lovász Bound and Some Generalizations. J. Comb. Inf. Syst. Sci. 3 (3), 134–152

    MATH  Google Scholar 

  15. Poljak, S., Rendl, F., Wolkowicz, H. (1995): A recipe for semidefinite relaxation for (0–1)-quadratic programming. J. Glob. Optim. 7, 51–73

    MATH  Google Scholar 

  16. Schrijver, A. (1979): A Comparison of the Delsarte and Lovász Bounds. IEEE Trans. Inf. Theory IT-25 (4), 425–429

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Meurdesoif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meurdesoif, P. Strengthening the Lovász bound for graph coloring. Math. Program. 102, 577–588 (2005). https://doi.org/10.1007/s101070100246

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s101070100246

Keywords