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ABSTRACT

The asymptotic convergence of parameterized variants of Newton’s method for the solution
of nonlinear systems of equations is considered. The original system is perturbed by a term
involving the variables and a scalar parameter which is driven to zero as the iteration
proceeds. The exact local solutions to the perturbed systems then form a differentiable
path leading to a solution of the original system, the scalar parameter determining the
progress along the path. A homotopy-type algorithm, which involves an inner iteration
in which the perturbed systems are approximately solved, is outlined. It is shown that
asymptotically, a single linear system is solved per update of the scalar parameter. It turns
out that a componentwise Q-superlinear rate may be attained under standard assumptions,
and that this rate may be made arbitrarily close to quadratic. Numerical experiments
illustrate the results and we discuss the relationships that this method shares with interior
methods in constrained optimization.

! This work was supported by the Belgian National Fund for Scientific Research, EPSRC
and an MNRT Grant for joint Ph.D. Support.

2 Computational Science and Engineering Department, Rutherford Appleton Laboratory,
Chilton, Oxfordshire, OX11 0QX, England, EU.
Email : n.gould@rl.ac.uk

3 Current reports available from “http://www.numerical.rl.ac.uk/reports/reports.html”.

4 CERFACS, av. G. Coriolis, Toulouse, 31057 France
Email: Dominique.Orban@cerfacs.fr

5 Department of Mathematics, University of Namur,
61, rue de Bruxelles, B-5000 Namur, Belgium, EU.
Email : philippe.toint@fundp.ac.be and annick.sartenaer@fundp.ac.be

6 Current reports available from “ftp://thales.math.fundp.ac.be/pub/reports”.

Computational Science and Engineering Department
Atlas Centre

Rutherford Appleton Laboratory

Oxon OX11 0QX

September 8, 2000.



2 N.ILM. Gould, D. Orban, A. Sartenaer and Ph.L. Toint

1 Introduction

We consider the solution of a nonlinear system of algebraic equations
F(z) =0, (1.1)

where F' : IR®™ — IR" is a continuously differentiable function of the vector of unknowns z. Let
fi(z) be the i-th component function of F'(z). We assume that the Jacobian J(z) of F(z), i.e. the
matrix whose i-th row is V fi(z)7, is full rank at a root of interest, z*, and Lipschitz continuous
close to this root, that is

Al. J(z*) is non-singular, and
A2. J(z) is Lipschitz continuous in some open neighbourhood of z*.
It is well-known that in this case, if * is a limit point of the Newton iteration
oF L = gk — J (@) F () (1.2)

started from some arbitrary x¥, the complete sequence {z*} converges in norm at a Q-quadratic
rate, that is to say that there is a constant x > 0 and integer k, for which

||:1:k+1 _ m*H

< 1.

o = 9
for all k > k, (see, for example, [3, 8]), where || - || denotes any norm on IR".

While this result is entirely satisfactory if all we are concerned about is a fast normwise
convergence rate, it is less useful if our interest is in methods that attain a fast componentwise
rate of convergence. Let us denote by z; the i-th component of any vector z € IR". It follows
immediately from (1.3) that there exists ko, > 0 such that

o7 ™ = af] < |2 = 2¥loo < moolla® — 2713,

for every component mf of ¥, and thus that {mf} converges R-quadratically. However this does
not imply that each (or any) component converges Q-quadratically, and indeed this may not be
the case, as we show in the following example.

Example 1.1 For 1 <[ <, let ¢; be the I-th column of the identity matrix of order n. Consider
the nonlinear system of equations

z? + 1., =0, for 1<i<n-—1,and 22+, =0, (1.4)

and suppose that the iterate ¥ = z;¢;, (J7;| < 1) for some index 1 <[ < n. It is straightforward

k

to show (see the Appendix) that a Newton step from z* results in the improved estimate

2 (1.5)

2
S Tye), for1<i<n-1
Teq for I = n,

of the root z* = 0. Hence, if the Newton iteration is started at z° = z;e; for some 1 <[ < n, the
resulting sequence of iterates has the property that each component is non-zero precisely once in
every cycle of n iterations. Thus, although the norm of the iterates converges @-quadratically,
this is not true of individual components—they do, however, converge at an n-step Q-2" rate. O
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In this paper, we are interested in Newton-like methods that produce iterates whose compo-
nents converge at the same Q-rate since then we can be sure that, asymptotically, each iteration
results in an improvement in any particular component(s). This is particularly important in
large-scale computations, where every iteration is expensive, and when only a subset of the vari-
ables are of interest. Our aim then is not to spend time on unnecessary computation, which
might happen if the components of interest do not improve over the course of a number of it-
erations. For example, if z = (zp,y) where zp is the vector of primal variables in a basic SQP
Newton method for constrained optimization, and where y is the vector of associated Lagrange
multipliers, it is known that the pair (zp,y) asymptotically converges at a Q-quadratic rate under
reasonable assumptions, while often it is only the primal variables zp that are of interest, and
these may not inherit the overall rate of the combined pair. Similarly, in some control problems,
the control u may be of higher interest than the state z, or the convergence properties of a par-
ticular combination of some components of 4 with some components of  is important, and this
combination might not possess the same convergence properties as the complete solution pair
(z,u). Another example where convergence does not take place componentwise is in the solution
to the Navier-Stokes equations when studying turbulent fluid flow around a complex geometry,
say, an aircraft. In the far field, the flow settles after a few iterations and fast convergence occurs,
whereas in the vicinity of the aircraft, convergence may be much slower and variables may be
of widely different magnitude, because of the effects of the complexity of the flowfield and of
the local mesh refinement. It may thus be desirable to encourage faster convergence in certain,
predefined, regions of the mesh—such as boundary layers, wakes, recirculation regions and shock
waves—and thus to have control over the convergence of certain, predefined, variables.

Recently, it has been shown that the iterates generated by certain interior-point methods for
constrained optimization converge at a componentwise fast (almost quadratic) Q-rate [6]. The
methods we consider here are a variation, and generalization, on this theme.

In what follows, we use the order notation for conciseness and clarity. If {o*} and {8*} are two
sequences of positive numbers converging to zero, we say that o = o(8*) if limy_,o /8% = 0,
we say that of = O(B*) if there exists a constant x > 0 such that o < kg* for all sufficiently
large k, and we write of = ©(8*) if of = O(8*) and B*¥ = O(a*). We also extend this notation
and say that of = O(1) if there exist constants %, kY > 0 such that x* < of < Y for all
sufficiently large k.

If {z*} is a sequence in IR™, and if K is an index set, the subsequence of {z*} indexed by K
will be denoted by {z*}rcx.

The paper is organized as follows. In §2, we describe how we intend to solve (1.1) and outline
a generic algorithm. We then examine the fast asymptotic properties of this algorithm in §3 and
give an explicit componentwise Q-rate of convergence. We discuss the method and its relations
with interior-point methods for constrained optimization in §4. Finally, we illustrate the results
numerically in §5 and conclude in §6.
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2 A parameterized variant of Newton’s method

Suppose h : IRy — IR" is a continuously differentiable vector-valued function of the positive real
parameter y such that A(0) = 0. A common way of solving problem (1.1) is instead to consider
solving a sequence of systems

F(z) = h(w), (2.1)

as p is progressively driven to zero (see for instance [7, 11, 14]). At iteration &, a typical method

sets the value of 11 to u*, generates a starting point z¥, possibly from the solution z*

k—1

corresponding
to 47, and uses a globally convergent method—which we refer to as the inner iteration—to
find z¥*+! satisfying

IF (@) — h(u®)|| < €8 (2.2)

for some small €¥ > 0. The sequences {y*} and {€*} are chosen to converge to zero. Our major
concern in what follows will be the choice of the starting point x’s“ rather than the details of
the globally convergent procedure—we simply mention that a trust-region variant of Newton’s
method (see [2]) is suitable. The most obvious starting point is simply the result of the previous
inner iteration, z¥. However, we intend to show that a superior point may be obtained as an
approzimation to the Newton point for the next parameterized subproblem

from z*. Applying an approximate Newton correction, we set
ak =k 4 sk (2.3)

where s* satisfies
J(¥)s* = h(uF) — F(a*) + 1% and ||r¥|| <o, (2.4)

for some residual vector ¥ and a suitable sequence {n*} of positive values whose limit is zero.
We might then examine the possible fast componentwise convergence of the sequence {z*} to a
solution of (1.1), under appropriate assumptions on h, when the starting point (2.3) is used at
each iteration.

In the remainder of this paper, our intent is to analyze methods similar to (2.1), but to allow
more generality on the perturbation function h, and to permit the use of approximate Jacobian
matrices G(z*) =~ J(z*). More precisely, consider the function & : IR" x IRy — IR" of (x, 1) and
suppose it satisfies the following properties

A3 The derivatives of h(z, ) with respect to = and u exist and are Lipschitz continuous over a
neighbourhood of (z*,0), and

Ad4. h(z*,0) =0, h(z, ) is nonzero for all z # z* sufficiently close to * and all sufficiently small
u > 0, and satisfies V h(z*,0) = 0.

We briefly comment Assumption A4 in §4. We shall henceforth consider the parameterized
system
F(z) = h(z, p) (2.5)

as a function of u as p decreases to zero. Since (2.1) is a special case of (2.5), we only consider and
refer to (2.5) in the remainder of this paper. Let (u) be the root of (2.5) for which lim, o z(u) =
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z*. From the implicit-function theorem, such a root exists for sufficiently small x4 by virtue of A1-
A4 and may be expressed as an analytic function of u, as is shown in Lemma, 3.1. The method
outlined above is sometimes referred to as a homotopy method and the simple idea behind it is
to track the path of exact solutions z(u) of (2.5) to z*, using a convergent iterative method to
solve (2.5) with fixed u. An overview of homotopy methods may be found in [7, 8, 14]. Deeper
motivation appears in [10] together with numerous references to practical situations, basic work
and sparse and dense linear algebra concerns in the course of the solution to (2.5).
In our more general context, we still use (2.3) where s* is now required to satisfy

G(zF)sk = h(zF, u*) — F(2®) + r* and |r¥| < 9*, (2.6)

for some residual vector ¥ and a suitable sequence {n*} of positive values whose limit is zero.
In this equation, the matrix G(z*) is either J(z*) or is a suitable approximation thereof, and is
required to satisfy the following condition

A5. There exists a constant kg > 0 such that for all z* sufficiently close to z*,
G (z*) = J(@®)]s*| < ke w7 I8, (2.7)
where s* is defined by (2.6).

Condition (2.7) is similar to the Dennis-Moré condition [3], often used in quasi-Newton methods,
but is stronger in that it makes the accuracy of the Jacobian approximation along the normalized
step explicitly dependent on p*~!, that is, as we show in Lemma 3.3, on the distance to the
solution. We further comment Assumption A5 in §4.

Since no derivative of h with respect to z appears in (2.6), a possible interpretation of (2.3)
is as an approximation to the Newton point for the next parameterized system F(z) = h(z, u*)
starting from z*, where the derivatives of h with respect to z, or any approximation thereof, have
been discarded from G(z). This is justified if, for instance, V h(z, ) is expensive to compute or
is perhaps unavailable. An alternative interpretation is as an approximation to the Newton point
for F(z) = h(z*, u¥). However, the absence of V h(x,u) in (2.6) is a key point to the results
to come and is strongly related to the asymptotic behaviour of interior methods in optimization,
as we now comment. Qur motivation is that using (2.3) and (2.6) may also be interpreted as a
method that extrapolates along the path of exact solutions z(u) to (2.5), in a manner similar to
that used in primal interior-point methods for constrained optimization. In that framework, it has
been shown [12] that Newton’s method applied to (2.5)—thus including the gradient V h(z, 1)
or an approximation thereof—is likely to produce infeasible steps, no matter how close z is to
z*. One thus has to cut back quite severely, which considerably slows down the convergence.
To circumvent this problem, Dussault [4] computes an extrapolation step to the trajectory z(u)
at the current iterate 2, say, followed by the Newton step that would have been taken from
zF—the sum of these two steps being similar to the step s* given by (2.6)—a process which
turns out to be superlinearly convergent. Note that in a primal-dual interior-point framework,
the aforementioned problem does not arise, and the technique applied by Dussault is identical to
Newton’s method, which may result in a componentwise nearly quadratic Q-rate of convergence
[6].

Let {u*}, {€*} and {n*} be strictly decreasing sequences of parameters whose limit are zero,
and consider the iteration given in Algorithm 2.1 for solving (1.1) by way of (2.5).
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Algorithm 2.1: Parameterized root-finding procedure

Given 2% € IR", u° >0, €® > 0 and 1° > 0, set k = 0 and perform the following steps:
Step 1 [Starting point]. Generate the starting point z¥ from z* using (2.3) and (2.6).

Step 2 [Inner iteration]. Starting from z¥, find z**! satisfying

[F (@) = h(z™, uh)| < €, (2.8)
stopping at the first inner iterate for which this condition is satisfied.

Step 3 [Update]. Update the parameters ¥, ¢* and % in such a way that they form strictly
decreasing sequences converging to zero. Set k < k + 1. Return to Step 1.

For future reference, we write equation (2.8) at iteration k — 1, that is

IF(2*) — h(z®, u* )| < 7 (2.9)
It follows immediately from (2.8) or (2.9) that if a subsequence {z*}cx, defined by some index
set K, has a limit °°, then * is a root of (1.1).

In order to find a point satisfying (2.8), we may for instance apply Newton’s method to
(2.5). However, in what follows, we will not be concerned with the exact mechanism of the inner

k+1 satisfying (2.8) is

iteration, merely than it starts from z¥ and returns as soon as a point z
discovered.

Notice that the step s* computed in Step 1 of Algorithm 2.1 might have been rejected by the
mechanism of the inner iteration, perhaps by a linesearch or trust-region acceptance rule, had we
used (2.6) as inner iteration procedure, and started from z*. By computing such a step outside
the inner iteration, we may choose to ignore such (often overly cautious) restrictions. Notice also
that the flexibility implied by (2.6) may be exploited by allowing early termination of iterative

methods (such as Krylov subspace methods) applied to the system
G(z*)s = h(z", u*) — F(z")

in the unknown s.

Our aim is thus to propose suitable values for the parameters {1*} and the accuracy tolerances
{e*} and {n*}, and to examine the effect such choices have on the rate of convergence of the overall
iteration.

3 Fast local convergence

In this section, we propose a set of updating rules for Step 3 of Algorithm 2.1. While it is possible
to derive more abstract conditions on general parameters {1*} and accuracy tolerances {€*} and
{n*} that permit fast convergence, we restrict ourselves here to the update

k
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and accuracy tolerances

k= ok (uF)HE ang
o= Tk (),
for appropriate scale factors
0 < Tmin < 70, 75,7 < Timaxs (34)
and exponents
0%, 65,05 > 0, (3.5)

where T,in and Tpax are given constants. Qur aim is to show that there are suitable values of
these exponents (3.5) that allow fast componentwise convergence. As asymptotic properties are
sought, boundedness of the scale factors (3.4) is sufficient, and we will not be concerned by their
exact values.

Our first result considers the behaviour of z(u) near z*.

Lemma 3.1 Suppose that A1-A4 hold. Then
z(p) = z* + pz’ + O(u?), (3.6)
for all sufficiently small u, where

' = J(z*) 'V ,h(z*,0). (3.7)

Proof. The definition of z(u) and (2.5) give that

By the implicit-function theorem and A1-A4, there exists a vector z’ such that z(u) may be
expressed in the form

w(p) = 3" + pa’ + e(p) where [(n)l| = o(p). (3-8)
Note that (3.8) immediately implies that
z(p) — 2" = O(p). (3-9)

A Taylor expansion of F(z(u)) involving (3.8) and (3.9) may be combined with A2 and the
identity F(z*) = 0 to give

F(z(n) = F(z*)+J(z")(ua’ + e(u) + O(u?)
= uJ(z*)z' + J(z*)e(p) + O(u?). (3.10)

On the other hand, a second-order expansion of h(x(u), ) about (z*,0) gives

h(z(p),p) = h(z*,0) + Vzh(z*,0)(x(p) — ) + Vuh(z*,0)u + O(4?)
= V,h(z*,0)u + O(p?), (3.11)
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where we used A3, A4 and (3.9). A matched asymptotic expansion between (3.10) and (3.11)
yields (3.7) and, using A1, the estimate ||e(u)|| = O(u?). Such an estimate combines with
(3.8) to give (3.6). O

In the remainder of this section, we consider a subsequence {:ck} kek converging to z*. Unless
otherwise specified, the following results involve only k € K. Our main theorem will then be
concerned with the whole sequence {z*}. Before proceeding, we need the following technical
result, inspired by [6, Lemma 3.1] and [13, Lemma 3.1], that will provide a bound, given in
Lemma 3.3, on the distance between z* satisfying (2.9) and z* for all sufficiently large k € K.

Lemma 3.2 Suppose that A1-A4 hold and that the vector z(u,u) € IR" is defined im-
plicitely as the solution to the nonlinear system

Uz, p,u) € F(z) — h(z,p) —u=0, (3.12)

for p € IRy and u € IR™. Then there exists a constant § > 0 such that the following
statements hold.

(i) The derivatives of z(u,u) with respect to p and u exist and are Lipschitz-continuous
functions over the neighbourhood

N5 € {(n,u) € Ry x R™ | s+ [Jul| < 0}
(ii) If (p1,u1), (p2,u2) € Ns, we have

llz(p1,u1) — z(p2,u2)|| = © (|p1 — pa| + llur — us||) - (3.13)

Proof. Since A1 and A4 imply that the Jacobian matrix V¥ (z* 0,0) = J(z*) is non-
singular, since ¥(z*,0,0) = 0 and since A2 and A3 imply that ¥(z,u,u) has Lipschitz-
continuous partial derivatives in a neighbourhood of (z*,0,0), (i) follows from the implicit-
function theorem. Moreover, still from the implicit-function theorem, the Jacobian of the
function z(u,u) found in (i) is given by

Vi, u) = [ (@ w) = Vah(@(u,u) )]~ ( Vihla(u,w),pm) T ),

where I, is the identity matrix of size n. If (u1,u1), (u2,u2) € Ns, a Taylor expansion thus
yields
2
z(p1,u1) — z(p2, u2) = Vyuz(p2, u2) ( Zi :Z; ) +0 <H< 51 :Zi ) ) : (3.14)
Notice that if (u,u) is close to (0,0), the Jacobian V, ,z(y,u) remains uniformly bounded
and has full-rank in a neighbourhood of (0,0) because of A1-A4. Its smallest singular value

thus remains bounded away from zero, and the first term on the right-hand side of (3.14) is
therefore dominant. These two last facts combine with (3.14) to give (3.13). O
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Note that because of Lemma 3.1, the exact solution z(u) to (2.5) is unique for all sufficiently
small p. Therefore, we have that x(u,0) = z(u), with z(u,0) as defined in Lemma 3.2.
Lemma, 3.2 now allows us to derive the following bound on the distance between z* and z*.

Lemma 3.3 Suppose that A1-A4 hold and that {z*}zcx — 2* where {z*} is a sequence
generated by Algorithm 2.1 using the updating rules (3.1)—(3.5). Then, for sufficiently large
kek,

lz* —2*| = O(u*1). (3.15)

Proof. Inequality (2.9) may be written as
F(zF) — h(z®, p* ) = uF  with |[uf| <L

For sufficiently large k € K, we have from the fact that u* — 0, (2.9) and (3.2) that (u*~1,u*)
lies in the neighbourhood Ny defined in Lemma 3.2. We may therefore apply (3.13) with the
parameters (u*¥~!,u*) and (0,0) to obtain

2 — 2] = ©(~1 + [ub]) = O(uh=1 + 1) = 0t ),
where we used the identities z(u* !, u*) = z¥, £(0,0) = z* and (3.2). O

We now give an upper bound on the size of the step s* computed from (2.6).

Lemma 3.4 Suppose that A1-A5 hold, that {z*}rcx — z* where {z*} is a sequence
generated by Algorithm 2.1 using the updating rules (3.1)—(3.5), and that the step s* is
computed from (2.6). Then, for sufficiently large k € K,

Il = O(*~1). (3.16)

Proof. Assumptions A1, A2 and A5 together imply that G(z*) is non-singular and
IG" (=) < 5y (3.17)
for some k; > 0 and all sufficiently large k € K, while (2.6) shows that
sf = G712 (h(xk,uk) — F(z*) + rk)
= G L) (hGaF k) = h(R iR (R k) = Pt +F), (38)

where ||r¥|| < n¥. In addition, A3, A4, (3.15) and the fact that u* < p*~! imply that for
sufficiently large k € K,

hak, i) = Vuh(a", 01 0 (1)), (3.19)
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and
h(ak, 1) = Vuh(a", 0¥ + 0 ((47)7) (3.20)

so that
ha®, i) = bk, ) = Ot = i) + 0 (1) =0t . 32)

Combining (3.17) and (3.18) with (2.9), (3.2), (3.3) and (3.21), we thus find that

151 < rx (1IA(2*, %) = B, ph=Y)| + 1 4 )
< K (O(uk_l) + e+ nk) (3.22)
= O(u"),
which proves (3.16). a

Our next result shows the benefit of using the advanced starting point (2.3) with s* computed
from (2.6).

Lemma 3.5 Suppose that A1-A5 hold and that {z*}ycx — z* where {z*} is a sequence
generated by Algorithm 2.1 using the updating rules (3.1)—(3.5). Then, if

min(2,1 + 95)

lim inf — 1, (3.23)
koo (1+05)(1+047)
it follows that
17 (2€) - h(zg, u®)| < €, (3.24)

for all sufficiently large k& € K, where the starting point z* is computed as in Step 1 of
Algorithm 2.1.

Proof. It follows from A2, (2.3), (2.6) and A5 that for all sufficiently large k € K,

F(zF) = F(z* + %) (3.25)
= F(ab) + J(")s" +0 (|Is]?) (3.26)
= F(a*) + G@a*)s + [J(a*) - Ga))st + 0 (|1s"]?) (3.27)
= h(a®, uF) + 8+ Ok s () + O (JIs*]1?) (3.28)
= h(a", uF) + 0(") + O 1sk]) + O (|Is*)12) - (3.29)
Hence (3.3), Lemma, 3.4, (3.29) and the fact that u* < p*~! reveal that
|1F (k) — h(zk, ub)]| = O(F) + 0 (WF=1)2) = O ((uh=1ymn@1+00) . (3.30)

On the other hand, using A3, A4 and the expansions

h(ak, 1) = V(e 00 + 0 (¥ 1)?)  and hab, u) = V", 00 +0 (1)),
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where we have used (3.15) and (3.16), we have
h(a®, p1¥) = h(ak, ub) = O ((WF1)?) . (3.31)
Thus, combining (3.30) and (3.31), we have

IF(28) — h(zg, u*) | < |[F(2§) — h(a, u?)| + Ih(z*, u*) — h(z§, u")|
- 0 <(uk71)min(2,1+0,’§)) +0 ((ukfl)Z)
- 0 ((uk—l)min(Z,l-I-G’,?)) . (332)

Equalities (3.1) and (3.2) give

¢ =7k (1 Mk—l)(1+9;’3_1)(1+0§), (3.33)

& _ K
6Ic — Tek (uk)1+0 k ( llf 1)1+0€ (

and observe that because of (3.5), (3.23) is equivalent to
min(2,1+60%) > (1+65)(1+65") + v, (3.34)

for all sufficiently large k& € K and for some constant v > 0. The required bound (3.24) now
follows, from (3.32), (3.33) and (3.34). O

It follows immediately from Lemma 3.5 that for all sufficiently large k € K, the starting point
z¥ satisfies the inner-iteration stopping rule (2.8) provided that the exponents 02_1, 6%, and 0’;
satisfy (3.23), and hence that we will choose, for all sufficiently large k € K,

gkt = gk, (3.35)

since Step 2 of Algorithm 2.1 requires that the first point satisfying (2.8) is taken.
We now show that, up to at least first order, the asymptotic form (3.6) of () is inherited
by any z* close to z*, satisfying (2.9).

Lemma 3.6 Suppose that A1-A4 hold, that {z*}rcx — z* where {z*} is a sequence
generated by Algorithm 2.1 using the updating rules (3.1)—(3.5) and that

lim inf 6 > 0. (3.36)
k—o00
kex
Then for all sufficiently large k € K,
a® =" + pF e 4 o(pF Y, (3.37)

where z' is given by (3.7).

Proof. Inequality (2.9) may be written as

F(z*) = h(z*, p*=1) + u*, where |[uf| < €F7L
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It follows from A2, the fact that z* is a root of (1.1) and (3.15), that
F(z*) = J(a*)(a* — 2*) + w*, where |Ju*|| = O(|la* - 2*|*) = O((u*™)?),
for all sufficiently large k € K. Hence, A1 implies that
o* — = T (2*) (W2, pF L) + uF — wh). (3.38)
On the other hand, we have from A3, A4 and (3.15) that
Wk, 1) = Vuh(a®, 0 40 (7)), (3.39)
which combines with (3.38) to give
a* —z* = J(z*)7? (Vﬂh(a}*,O)uk_1 +ufF —wk 40 ((uk_l)Q)) . (3.40)

Observe now that (3.36) is equivalent to % > 6 for some 67 > 0 and for all sufficiently large
k € K, which, together with (3.2) implies that ¢*~! = o(u*~!). Combining this observation
with the identities (3.7) and (3.40), we obtain (3.37). O

Finally, we show that an estimate of the form (3.37) continues to hold at z*+1.

Lemma 3.7 Suppose that A1-A5 hold, that {z*}rcx — z* where {z*} is a sequence
generated by Algorithm 2.1 using the updating rules (3.1)—(3.5), that (3.23)and (3.36) hold,
that we have
lim inf 6% > 0, (3.41)
k—o00
kex

and
lim sup 0571 <1 (3.42)

k—o00
kEK

Then for all sufficiently large k € K,
of = 2% 4 R’ 4 o(uh), (3.43)

where z' is given by (3.7).

Proof. Applying the arguments used to derive (3.20) and (3.29), it follows from (2.3), (2.6),
A2-A5, (3.35), Lemmas 3.3 and 3.4, and the inequality pu* < p*~! that

F(z*Y) = F(zF 4 )
= (¥, 1)+ 0F) + 0 (uh1s*]) + 0 (I1s*]1?)
= Vuh(z", 0" +00F) + 0 (" 1)) (3.44)

for sufficiently large £ € K. On the other hand, using A2, the identity F(z*) = 0, (3.15),
(3.16) and the inequality ||z**! — z*|| < ||z* — z*|| + ||s*|| = O(u*1), a second-order Taylor
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expansion gives

F@@**!) = F()+J@) @ -2 +0 (| —2"|])
= J() e -2 0o (W h?). (3.45)

Observe that because of (3.5), (3.42) is equivalent to 0 < 0,’3_1 < 0y, for some 6, < 1 and for
all sufficiently large k¥ € K, which combines with (3.1) to give (1*~1)? = o(u*). Similarly,
(3.41) is equivalent to 9’,7 > @ for some ¢ > 0 and for all sufficiently large £ € X, which,

together with (3.3) ensures that n* = 7'4“ (/ﬂ“)“’alﬂc = o(u*). Using these observations and

combining (3.44) and (3.45), A1 implies that

oFH —z* = pkJ(z*) 1V, h(z*,0) + O(n*) + O ((,ukfl)Q)
= pFJ(z*) " Vuh(z*,0) + o(ub),

which completes the proof. O

Note that there is a fundamental difference between Lemma 3.6 and Lemma 3.7, which is
that (3.37) is concerned with an iterate z* belonging to a converging subsequence indexed by K,

while in (3.43), there is no assumption that k£ + 1 € K. This fact is the key to the proof of our
main result.

Theorem 3.8 Suppose that A1-A5 hold, that {z*}rcx — z* where {z¥} is a sequence
generated by Algorithm 2.1 using the updating rules (3.1)—(3.5) and that (3.23), (3.36),
(3.41) and (3.42) are satisfied. Then the complete sequence {z*} converges to z* and for all
sufficiently large k, we have

o+ — o7

(i)

= O(1) provided that z’ # 0; and

|zk — x*||1+9;’3_1
ot — 2]

ok — 10

(ii)

= O(1) for every component i = 1,...,n for which z} # 0.

As a consequence, the entire sequence {z¥} converges to z* at a (componentwise) Q-

superlinear rate determined by lim sup;,_, 9’;.

Proof. It follows from Lemma 3.7 and the fact that u* — 0 that the sequence {z**!}cx
also converges to xz*. Applying again Lemma 3.6 and Lemma 3.7 to the subsequence of
{z*} defined by the index set K* = KU{k+ 1| k € K}, we conclude that the sequence
{xF*+1},cxc+ also converges to z*. An inductive argument thus shows that the whole sequence
{z*} converges to z*. To prove (i), let us assume that z' # 0. We then have from Lemma 3.6
and Lemma 3.7 that ||z* — z*|| = ©(p*~1!) and ||z*+! — z*|| = ©(u¥), which we combine with
(3.1) to obtain the desired result. We prove (ii) similarly, by considering equations (3.37) and
(3.43) componentwise. O
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From Theorem 3.8, the asymptotic componentwise Q-rate of convergence of {z*} to z* is de-
termined by the upper limit lim sup;,_, o, 0,’3. Under the assumption that z} # 0 foralli = 1,...,n,
and according to the restrictions (3.23), (3.36), (3.41) and (3.42), a componentwise Q-rate of con-
vergence arbitrarily close to 2 is achieved by choosing {Hﬁ} and {#*} so that lim sup,,_, ., 6% = 1—a,

I
lim inf,_,. 0% = B and 9713 > 1 for all sufficiently large k, where a, 8 € (0,1) can be chosen as

€

small as desired. A Q-rate of (just under) 1.5 may be obtained by setting 9,’3 = 0.5, 0¥ = 0.01 for
all k and 6% such that lim infy_, 6% > 0.515.

4 Discussion

So far, we have not commented on appropriate choices for h(z, ). Perhaps the most obvious and
simplest choice is the linear function

h(z,p) = pe, (4.1)

where e is the vector of all ones, for which V,h(z*,0) = e. A similar choice is made in primal-dual
interior-point methods where the complementarity conditions are perturbed and where we choose

h(z, p) = pe, (4.2)

where € is made of zeros and ones. We refer the interested reader to [6] for more details on a
primal-dual interior-point method in relation with the componentwise convergence of the iterates.
In view of Theorem 3.8, ideally we would like to use an h(z, ) for which every component of z’
is nonzero. We have no such guarantee if we use (4.1) or (4.2). For instance,

V,h(z*,0) = J(z)e, (4.3)

such as would arise if
h(z, 1) = pd(z%)e, (4.4)

would be ideal for then ' = e, but of course depends on the (unknown) J(z*). If F is twice
continuously differentiable, the choice

h(z,p) = pJ(z)e, (4.5)

which also aims for ' = e, is more similar to a primal interior-point method, and differs from
(4.4) in a number of respects. In the framework of interior methods, the most obvious of these is
probably that if V,[F(z) — h(z, )] is independent of y, then so is the region of convergence of the
method (2.6) [1, Lemma 2.1], [8, §3.2.12]; for (4.2), the size of this region is ©(1) while for (4.5),
it is ©(u) and shrinks as convergence occurs [9]. This behaviour is observed in the numerical tests
of Section 5. A particular form of h(z, 4) may emerge naturally from the problem itself, or may
need to have properties dictated by the problem, for instance, a higher level of nonlinearity in
. See for instance [10] for references to such work. If we are only interested in the convergence
properties of certain components then, in view of Theorem 3.8 (ii), the perturbation function
h(z, ) may be chosen such that the asymptotic behaviour of these components is controlled, i.e.
such that the corresponding components of the vector z’' are nonzero. In any case, we certainly
want to choose h(z, ) and p® such that a solution to F(x) = h(z, u°) is either known or easy to
find.



Componentwise fast convergence of methods for solving nonlinear equations 15

Interestingly, our approach can easily be applied to the framework of nonlinear least-squares
problems, where one solves

min || R(z)|[3 (4.6)
for some smooth function R from IR" into IR™ with m > n. If we assume that the Jacobian of
R, V;R(z) is of full rank at the solution z* of (4.6), the normal equations then provide a link to
our approach. Indeed, we may replace (2.8) by

IV R(z* ) R(@* 1) — h(a* !, p¥)|| < €

and compute the step to CC]SC using
G(zF)sk = h(z*, u*) — Vo R(zF)T R(z¥) + r* and ||r¥| < 9*,

where now G(z*) ~ V,R(z*)T V. R(z*).

We finally briefly comment on the assumptions we made in §2. While the first part of As-
sumption A4 is clearly implied by our intent to use a homotopy method, the second part limits
the level of dependence of h on z, at least close to z*, which is in line with our initial motivation
where h is independent of z. It is easily verified that the examples of this section and of §5 satisfy
A4. Regarding A5, one could argue that having the right-hand side of (2.7) depend on y is not
intuitive since its left-hand side does not. In view of Lemma 3.4, it is possible to replace the
right-hand side of (2.7) by kg ||s*||>—which would be stronger since the bound p*~* = O(||s*||)
does not necessarily hold—or even by r¢ ||sk||1+9§ for some 6% > 0% > 0. This last choice would
however slightly modify condition (3.23) which we would need to replace by

min(2, 1+ 6F, 1+ 6%)

lim inf — (4.7
koo (14 0F) (1 + 0571)
A weaker assumption would be to replace the right-hand side of (2.7) by xg (4*71)2, or, weaker

still, kg (uF 1)1 for some 6% > 6% > 0, in which case (3.23) becomes

.. .min(2,1+ 9’;, 1+0%)
lim inf T o1 g1
Koo (14 65)(1+ 65 )

In this last case again, the left and right-hand sides of (2.7) would not involve quantities that are
directly comparable.

5 Numerical experiments

In this section we illustrate the above results on Example 1.1 when n = 5 and when G(z*) = J(z*)
for all k. The starting point is chosen as z° = 0.8 e3. The following figures indicate the values
taken by the components of the vector z and by ||z||; along the iterations when solving the
problem given in Example 1.1 for the indicated functions hA(x, ). The first row of each table
indicates the starting values and the iteration counter increases when reading the table from top
to bottom. In Figure 5.1, a pure Newton scheme is applied, which corresponds to h(z,u) = 0,
and we observe the behaviour described in Example 1.1. In this and subsequent experiments, all
computation is performed in extended-precision arithmetic under Mathematica, so as to see the
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predicted rates of convergence. Figure 5.2 corresponds to the case where we set h(x, ) = pJ(z*)e,

1.9

where 10 = 0.9 and is updated according to p*t! = (u*)!?, which corresponds to using Hﬁ =0.9

for all k. We also use the values € = ||F(z%) — h(z?, u0)||, 6 = 0.05, 7¥ = 0—i.e. the system
(2.6) is solved exactly—and Tmin = Tﬁ =7k = Tﬁ = Tmax = 1 for all k. In this case, a single

step (2.6) suffices for each value of ¥, because z* happens to lie inside the region of convergence
of Newton’s method for all k. In Figure 5.3, we set h(z,u) = pJ(z)e and use the same rules
for p. In the inner iteration, we choose to take steps given by (2.6) as well. This time, two
steps (2.6) are required for each of the first 7 iterations—a possible reason for this is that the
region of convergence of Newton’s method shrinks faster as z* is approached than when using
h(z,p) = pJ(z*)e. For the remaining iterations, a single step is sufficient. Notice that a single
step suffices precisely where the (nearly) quadratic convergence shows up. It is also worth noticing
that ||z||2 converges almost quadratically to zero in all cases, but that this behaviour appears

later in the course of the iterations whenever h(z,u) # 0.

0.8185793185
0.4926351154
0.3392381302
0.2255449862
0.09159450042
0.01130186677
0.0002449105253
6.691793911e—8
5.590081365e—15
1.57772181e—28
0.

0.8185793185
0.5471713671
0.3939035662
0.2153839477
0.08317375999
0.01335473277
0.000203454507
7.688192705e—8
6.194418554e—15
1.191179967e—28
0.

0.8185793185
0.4578868715
0.3537864395
0.2388073667
0.08418223925
0.01173190562
0.000254172933
5.829599195e—8
7.627238484e—15
1.277954666e—28
0.

0.1488524089
0.6040597546
0.3711274953
0.2095195862
0.09044286051
0.01214697118
0.0002129319505
8.150778483e—8
5.114830515e—15
1.459392675e—28
0.

0.8185793185
0.5259466409
0.4019772598
0.2355470167
0.07961993546
0.01301825532
0.000223634159
6.223884381e—8
8.359926894e—15
1.135959704e—28
0.

T1 T2 T3 T4 5 || 2

0 0 0.8 0 0 0.8

0 0 0 0.64 0 0.64

0 0 0 0 0.4096 0.4096

0.16777216 0 0 0 0 0.16777216

0 0.02814749767 0 0 0 0.02814749767

0 0 0.0007922816251 0 0 0.0007922816251

0 0 0 6.277101735e—7 0 6.277101735e—7

0 0 0 0 3.94020062e¢—13 || 3.94020062¢—13

1.552518092e—25 | 0 0 0 0 1.552518092e—25

0 2.410312427e¢—50 | 0 0 0 2.410312427e—50

0 0 5.809605995e—100 | 0 0 5.809605995e—100

0 0 0 3.375152182e—199 | 0 3.375152182e—199
Figure 5.1: h(z,u) =0

x1 x2 x3 x4 z5 [|z||2

0 0 0.8 0 0 0.8

1.643911628
1.180361938
0.8335038742
0.5036572229
0.1921283982
0.02758156213
0.0005112054717
1.558988667e—7
1.496143264e—14
2.993579025e—28
0.

Figure 5.2: h(z,u) = pJ(z*)e
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z1 z2 z3 T4 z5 [|z||2

0 0 0.8 0 0 0.8

0.988252 1.21087 0.846408 1.44309 1.12423 2.55062
0.806001 1.25925 0.807841 1.09401 1.20735 2.35426
0.448428 0.833458 0.822022 0.514291 1.03327 1.704
0.783414 —0.000733957 | 0.557764 0.387957 0.240596 1.06454
0.0796238 0.10213 0.322878 0.0421053 0.24526 0.427722
0.00702223 0.0119832 0.0070138 0.00736868 0.0177941 0.0247594
0.0000812764 | 0.000081415 0.0000812741 | 0.0000813083 | 0.0000812747 || 0.000181814
2.3538e—8 2.35383e—8 2.35609e¢—8 2.35379e—8 2.35435e—8 5.26454e—8
2.2707le—15 | 2.27045e—15 2.27046e—15 | 2.27152e—15 | 2.27044e—15 5.07748e—15
9.348e—29 9.348e—29 9.348e—29 9.348e—29 9.348e—29 2.09028e—28
0. 0. 0. 0. 0. 0.
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Figure 5.3: h(z,u) = pJ(x)e

6 Conclusion

In this paper, we have studied a homotopy-type method for solving square systems of non-singular,
nonlinear equations. The method exhibits an asymptotic convergence rate that is essentially as
fast as that of Newton’s method but has the property that all the components of the iterates
converge to their limit at comparable rates. This property may be desirable in a number of
practical applications. The results are illustrated on an example which exhibits a normwise
Q-quadratic convergence which does not occur componentwise when a pure Newton scheme is
applied. The method relies on the computation of a suitable starting point for the modified
Newton iteration, which turns out to readily satisfy the stopping conditions. Asymptotically,
a single step is then sufficient and leads to a componentwise Q-superlinear convergence rate,
which may be as close to quadratic as desired. It is noticeable that the results do not depend on
how the exponents 6%, Hﬁ and 9’,? are updated, merely than they should satisfy the inequalities
(3.23), (3.36), (3.41) and (3.42). The method leaves freedom to the user in two major respects.
The first, and most important, is the choice of the perturbation function h(z, 1) and its possible
The method

presented in this paper was inspired by similar behaviour in primal-dual interior-point methods

dependence on z, subject to A4. The second is to permit inexact Jacobians.

[6] and exterior penalty methods [5] for constrained optimization. It is still an issue to determine
whether a particular h(z,y) is advantageous, or should be avoided; in particular, there might or
might not exist a perturbation function h(z, ) that depends on z and which is better than the
usual perturbation in primal interior-point methods for linear and nonlinear programming. The
application of the technique presented in this paper to nonlinear least-squares problems is also
the object of continuing research.
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Appendix.

We justify the claims made in Example 1.1.

Theorem A.0.1 A single Newton iteration for the nonlinear system (1.4) from the point

k k+1

z® = zjey, for some index 1 <[ < n, results in the point "1 satisfying (1.5).

Proof. On writing (1.4) as

% + Ty
ac% + x5
F(z) = =0,
‘T%—l + Tn
wp + 1
it follows that
2.’131 1
2.’1,'2 1 n
J(z) = . . = P—I—QineieiT,
2%, 1 1 =1
1 2%y,
where P is the permutation matrix
1
1

At the point of interest,
J(z1e)) = P + 2xyepe]

and hence the Sherman-Morrison-Woodbury formula along with the fact that P is a permu-
tation, and thus that P! = P7 reveals that

_ 2z
J 1 =pr_ = pTe(Pe)T.
(xlel) I 2xlelTPTel el( el)
Note that
f =1 for1<i<n-1
Pe, — en or | and PTel _ ) an or1<I<n
el for2<i<nm e1 forl =n.

There are now three cases to consider.

(i). If1 =1,
2.’1:1 T

J Nze)) =P — — e el =PT —2z,eel.
(11) 1+2$16{622n 1€2€n
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But, since F(zie1) = z2e1 + z1e,, the Newton correction is
’ 1 (3]

and hence z

(i

—J_l(wlel)F(xlel) = —(PT — 2$1€2€£)(I%61 +ze,) = w%eQ —zi€q,

k+1 — .T%GQ.

i). Secondly, if 1 <[ < m,

2.’13[

J 1 =pr - =
(@ie1) 1+ 2$lelTel+1

T _ pT T
ep1€-1 =P —2mep 6.

Since F(ze;) = z?e; + z;€;_1, the Newton correction in this case is
1€ el 1€1-1,

and hence z

—Jfl(ﬂflel)F(ﬂUlel) = —(PT - 2$lel+1e;{1)($1261 +xe, ) = 'Tl2€l+1 — Iiey,

k+1 _ .2
= L1€41-

(iii). Finally, if [ = n,

2x,

-1 T T T T
J (.’Enen) =P — melen_l =P — 2.1'"616
n-n-l

n—1-

Since F(z,e,) = z2e, + Tnen—1, the Newton correction is now

and hence z

_J_l(mﬂeﬂ)F(mﬂeﬂ) = _(PT - 2.’,(3”6162_1)(.’,6%6” + mnen—l) = $72161 = Lplp

k+1 _ .2
= Z €. O
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