Skip to main content
Log in

An adaptive compromise programming method for multi-objective path optimization

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

Network routing problems generally involve multiple objectives which may conflict one another. An effective way to solve such problems is to generate a set of Pareto-optimal solutions that is small enough to be handled by a decision maker and large enough to give an overview of all possible trade-offs among the conflicting objectives. To accomplish this, the present paper proposes an adaptive method based on compromise programming to assist decision makers in identifying Pareto-optimal paths, particularly for non-convex problems. This method can provide an unbiased approximation of the Pareto-optimal alternatives by adaptively changing the origin and direction of search in the objective space via the dynamic updating of the largest unexplored region till an appropriately structured Pareto front is captured. To demonstrate the efficacy of the proposed methodology, a case study is carried out for the transportation of dangerous goods in the road network of Hong Kong with the support of geographic information system. The experimental results confirm the effectiveness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahn CW, Ramakrishna R (2002) A genetic algorithm for shortest path routing problem and the sizing of populations. IEEE Trans Evol Comput 6(6):566–579

    Article  Google Scholar 

  • Akgün V, Erkut E, Batta R (2000) On finding dissimilar paths. Eur J Oper Res 121(2):232–246

    Article  Google Scholar 

  • Balas E (1989) The prize collecting traveling salesman problem. Networks 19(6):621–636

    Article  Google Scholar 

  • Bowman VJ (1976) On the relationship of the Tchebycheff norm and the efficient frontier of multiple-criteria objectives. Lect Notes Econ Math Syst 135:76–85

    Google Scholar 

  • Cherkassky BV, Goldberg AV, Radzik T (1996) Shortest paths algorithms: theory and experimental evaluation. Math Program 73(2):129–174

    Article  Google Scholar 

  • Coutinho-Rodrigues J, Clímaco J, Current J (1999) An interactive bi-objective shortest path approach: searching for unsupported nondominated solutions. Comput Oper Res 26(8):789–798

    Article  Google Scholar 

  • Davies C, Lingras P (2003) Genetic algorithms for rerouting shortest paths in dynamic and stochastic networks. Eur J Oper Res 144(1):27–38

    Article  Google Scholar 

  • Delmelle EM, Li SP, Murray AT (2012) Identifying bus stop redundancy: a gis-based spatial optimization approach. Comput Environ Urban Syst. doi:10.1016/j.compenvurbsys.2012.01.002

    Google Scholar 

  • Dijkstra EW (1959) A note on two problems in connection with graphs. Numer Math 1(1):269–271

    Article  Google Scholar 

  • Ehrgott M (2005) Multicriteria optimization, 2nd edn. Springer, Berlin, Heidelberg and New York

    Google Scholar 

  • Ehrgott M, Gandibleux X (2000) A survey and annotated bibliography of multi-objective combinatorial optimization. OR Spectr 22(4):425–460

    Article  Google Scholar 

  • Erkut E, Tjandra SA, Verter V (2007) Hazardous materials transportation. In: Laporte G, Barnhart C (eds) Handbooks in operations research and management science. Elsevier Science, North-Holland, pp 539–621

    Google Scholar 

  • FHWA (1994) Guidelines for applying criteria to designate routes for transporting hazardous materials. Report FHWA-SA-94-083, Federal Highway Administration, USA

  • Gandibleux X, Beugnies F, Randriamasy S (2006) Martins’ algorithm revisited for multi-objective shortest path problems with a MaxMin cost function. 4OR-Q J. Oper Res 4(1):47–59

    Google Scholar 

  • Garey M, Johnson D (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, San Francisco

    Google Scholar 

  • Granat J, Guerriero F (2003) The interactive analysis of the multicriteria shortest path problem by the reference point method. Eur J Oper Res 151(1):103–118

    Article  Google Scholar 

  • Hallam C, Harrison K, Ward J (2001) A multiobjective optimal path algorithm. Digit Signal Process 11(2):133–143

    Article  Google Scholar 

  • Hartley R (1985) Vector optimal routing by dynamic programming. In: Serafini P (ed) Mathematics of multiobjective optimization. Springer, Berlin, Heidelberg and New York, pp 215–224

    Google Scholar 

  • Huang B, Cheu RL, Liew YS (2004) GIS and genetic algorithms for HAZMAT route planning with security considerations. Int J Geogr Inf Sci 18(8):769–787

    Article  Google Scholar 

  • Huang B, Liu N, Chandramouli M (2006) A GIS supported Ant algorithm for the linear feature covering. Decis Support Syst 42(2):1063–1075

    Article  Google Scholar 

  • Huang B, Fery P, Xue LL, Wang YJ (2008) Seeking the Pareto front for multiobjective spatial optimization problems. Int J Geogr Inf Sci 22(5):507–526

    Article  Google Scholar 

  • Hughes EJ (2003) Multi-objective binary search optimisation. In: Proceedings of 2nd international conference on evolutionary multi-criterion optimization, EMO’03, pp 102–117

  • Leung Y, Li G, Xu ZB (1998) A genetic algorithm for the multiple destination routing problems. IEEE Trans Evol Comput 2(4):150–161

    Article  Google Scholar 

  • Li RR, Leung Y (2011) Multi-objective route planning for dangerous goods using compromise programming. J Geogr Syst 13(3):249–271

    Article  Google Scholar 

  • Li X, Yeh AGO (2005) Integration of genetic algorithms and GIS for optimal location search. Int J Geogr Inf Sci 19(5):581–601

    Article  Google Scholar 

  • Liu N, Huang B, Chandramouli M (2006) Optimal siting of fire stations using GIS and ANT algorithm. J Comput Civ Eng 20(5):361–369

    Article  Google Scholar 

  • Malczewski J (1999) GIS and multicriteria decision making analysis. Wiley, New York

    Google Scholar 

  • Martins EQV (1984) On a multicriteria shortest path problem. Eur J Oper Res 16(2):236–245

    Article  Google Scholar 

  • Martins EQV, Santos JLE (1999) The labelling algorithm for multiobjective shortest paths. Technical Report, Departmento de Matematica, Universidade de Coimbra, Portugal

  • Meng Q, Lee DH, Cheu RL (2005) The multiobjective vehicle routing and scheduling problem with time window constraints in hazardous material transportation. J Transp Eng ASCE 131(9):699–707

    Article  Google Scholar 

  • Mooney P, Winstanley A (2006) An evolutionary algorithm for multicriteria path optimization problems. Int J Geogr Inf Sci 20(4):401–423

    Article  Google Scholar 

  • Murray AT (2010) Advances in location modeling: GIS linkages and contributions. J Geogr Syst 12(3):335–354

    Article  Google Scholar 

  • Skriver A, Andersen K (2000) A label correcting approach for solving bicriterion shortest-path problems. Comput Oper Res 27(6):507–524

    Article  Google Scholar 

  • Tsaggouris G, Zaroliagis C (2006) Multi-objective optimization: improved FPTAS for shortest paths and non-linear objectives with applications. Lect Notes Comput Sci 4288:389–398

    Article  Google Scholar 

  • White DJ (1982) The set of efficient solutions for multiple objective shortest path problems. Comput Oper Res 9(2):101–107

    Article  Google Scholar 

  • Wierzbicki AP (1982) Mathematical basis for satisfying decision making. Math Model 3(5):391–405

    Article  Google Scholar 

  • Xiao N, Bennett DA, Armstrong MP (2002) Using evolutionary algorithms to generate alternatives for multiobjective site search problems. Environ Plan A 34(4):639–656

    Article  Google Scholar 

  • Yu PL, Leitmann G (1974) Compromise solutions, dominations structures, and Salukvadze’s solution. J Optim Theory Appl 13(3):362–378

    Article  Google Scholar 

  • Zeleny M (1973) Compromise programming. In: Cochrane JL, Zeleny M (eds) Multiple criteria decision making. University of South Carolina Press, Columbia, pp 262–301

    Google Scholar 

  • Zionts S, Wallenius J (1976) An interactive programming method for solving the multiple criteria problem. Manag Sci 22(6):652–663

    Article  Google Scholar 

  • Zitzler E, Thiele L, Laumanns M, Fonseca CM, Da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–131

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the earmarked grant (CUHK 449711) of the Hong Kong Research Grants Council. The authors would like to thank the anonymous reviewers for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongrong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Leung, Y., Lin, H. et al. An adaptive compromise programming method for multi-objective path optimization. J Geogr Syst 15, 211–228 (2013). https://doi.org/10.1007/s10109-012-0172-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-012-0172-1

Keywords

JEL Classification