Skip to main content
Log in

Alignment of surface water ontologies: a comparison of manual and automated approaches

  • Original Article
  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

Abstract

Studying the surface water systems of the earth is important for many fields, from biology to agriculture to tourism. Much of the data relevant to surface water systems are stored in isolated repositories that interface with different ontologies, such as the US Geological Survey’s Surface Water Ontology or the Environment Ontology (ENVO). Effectively using these data requires integrating the ontologies so that the data can be seamlessly queried and analyzed. Automated alignment algorithms exist to facilitate this data integration challenge. In this paper we examine the utility of two leading automated alignment systems to integrate four pairs of ontologies from the surface water domain. We show that the performance of such systems in this domain lags behind their results on popular benchmarks, and therefore incorporate the alignment task described here into the set of benchmarks used by the alignment community. We also show that with minor modifications, existing alignment algorithms can be used effectively within a semi-automated system for the surface water domain. In addition, we analyze the unique challenges of this domain with respect to data integration and discuss possible solutions to pursue in order to address these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://oaei.ontologymatching.org.

  2. http://oaei.ontologymatching.org/2018/complex/index.html.

  3. http://oaei.ontologymatching.org/2018/.

  4. http://oaei.ontologymatching.org/2018/complex/index.html#hydrography.

  5. There was also a fourth data set from the plan taxonomy domain, but we could not include it in our analysis because the reference alignments are not public.

  6. This code is in the string matcher and the neighborhood matcher within AML.

  7. https://github.com/mcheatham/aml-comments.

  8. https://github.com/mcheatham/worldview.

References

  • Abele A, McCrae J, Buitelaar P, Jentzsch A, Cyganiak R (2017) Linking open data cloud diagram 2017. http://lod-cloud.net/. Accessed 1 Aug 2018

  • Achichi M, Cheatham M, Dragisic Z, Euzenat J, Faria D, Ferrara A, Flouris G, Fundulaki I, Harrow I, Ivanova V et al (2017) Results of the ontology alignment evaluation initiative 2017. In: OM 2017-12th ISWC workshop on ontology matching, pp 61–113. No commercial editor

  • Algergawy A, Cheatham M, Faria D, Ferrara A, Fundulaki I, Harrow I, Hertling S, Jiménez-Ruiz E, Karam N, Khiat A et al (2018) Results of the ontology alignment evaluation initiative 2018. In: 13th international workshop on ontology matching co-located with the 17th ISWC (OM 2018), vol 2288, pp 76–116

  • Bakillah M, Mostafavi MA (2012) Universal ontology of geographic space: semantic enrichment for spatial data, chap. In: Podobnikar T, Čeh M (ed) An architecture for enhancing semantic interoperability based on enrichment of semantics of geospatial data. IGI Global, Hershey

    Chapter  Google Scholar 

  • Berners-Lee T, Hendler J, Lassila O et al (2001) The semantic web. Sci Am 284(5):28–37

    Article  Google Scholar 

  • Buttigieg PL, Morrison N, Smith B, Mungall CJ, Lewis SE (2013) The environment ontology: contextualising biological and biomedical entities. J Biomed Semant 4(1):43

    Article  Google Scholar 

  • Chaabane S, Jaziri W (2018) A novel algorithm for fully automated mapping of geospatial ontologies. J Geogr Syst 20(1):85–105

    Article  Google Scholar 

  • Cheatham M, Hitzler P (2013) String similarity metrics for ontology alignment. In: International semantic web conference. Springer, Berlin, pp 294–309

  • Cheatham M, Pesquita C (2017) Semantic data integration. In: Zomaya A, Sakr S (eds) Handbook of big data technologies. Springer, Cham, pp 263–305

    Chapter  Google Scholar 

  • Cruz IF, Xiao H (2008) Data integration for querying geospatial sources. In: Sample J, Shaw K, Tu S, Abdelguerfi M (eds) Geospatial services and applications for the internet. Springer, Boston, pp 110–134

    Google Scholar 

  • Dornblut I, Atkinson R (2014) OGC HY\_features: a common hydrologic feature model. Open geospatial consortium technical report OGC 11-039r3

  • Du H, Alechina N, Jackson M, Hart G (2013) Matching formal and informal geospatial ontologies. In: Vandenbroucke D, Bucher B, Crompvoets J (eds) Geographic information science at the heart of Europe. Springer, Berlin, pp 155–171

    Chapter  Google Scholar 

  • Duckham M, Worboys M (2007) Automated geographical information fusion and ontology alignment. In: Belussi A, Catania B, Clementini E, Ferrari E (eds) Spatial data on the web. Springer, Berlin, pp 109–132

    Chapter  Google Scholar 

  • Euzenat J, Shvaiko P et al (2007) Ontology matching, vol 18. Springer, Berlin

    Google Scholar 

  • Faria D, Pesquita C, Santos E, Palmonari M, Cruz IF, Couto FM (2013) The agreementmakerlight ontology matching system. In: OTM confederated international conferences“ on the move to meaningful internet systems”. Springer, pp 527–541

  • Hamdi F, Safar B, Niraula NB, Reynaud C (2010) Taxomap alignment and refinement modules: results for OAEI 2010. In: Proceedings of the 5th international conference on ontology matching, vol 689, pp 212–219. CEUR-WS.org

  • Hitzler P, Gangemi A, Janowicz K (2016) Ontology engineering with ontology design patterns: foundations and applications, vol 25. IOS Press, Amsterdam

    Google Scholar 

  • Jain P, Hitzler P, Sheth AP, Verma K, Yeh PZ (2010) Ontology alignment for linked open data. In: International semantic web conference. Springer, Berlin, pp 402–417

  • Jean-Mary YR, Shironoshita EP, Kabuka MR (2009) Ontology matching with semantic verification. Web Semant Sci Serv Agents World Wide Web 7(3):235–251

    Article  Google Scholar 

  • Jiménez-Ruiz E, Grau BC (2011) Logmap: logic-based and scalable ontology matching. In: International semantic web conference. Springer, Berlin, pp 273–288

  • Joshi AK, Hitzler P, Dong G (2013) Logical linked data compression. In: Extended semantic web conference. Springer, Berlin, pp 170–184

  • Li J, Tang J, Li Y, Luo Q (2009) RiMOM: a dynamic multistrategy ontology alignment framework. IEEE Trans Knowl Data Eng 21(8):1218–1232

    Article  Google Scholar 

  • Matuszka T, Kiss A (2014) Geodint: towards semantic web-based geographic data integration. In: Asian conference on intelligent information and database systems. Springer, Berlin, pp 191–200

  • Otero-Cerdeira L, Rodríguez-Martínez FJ, Gómez-Rodríguez A (2015) Ontology matching: a literature review. Expert Syst Appl 42(2):949–971

    Article  Google Scholar 

  • Pesaranghader A, Muthaiyah S (2013) Definition-based information content vectors for semantic similarity measurement. In: Soft computing applications and intelligent systems. Springer, Berlin, pp 268–282

  • Raskin R, Pan M (2003) Semantic Web for earth and environmental terminology (SWEET). In: Proceedings of the workshop on semantic web technologies for searching and retrieving scientific data, vol 25

  • Shvaiko P, Euzenat J (2013) Ontology matching: state of the art and future challenges. IEEE Trans Knowl Data Eng 25(1):158–176

    Article  Google Scholar 

  • Sinha G, Mark D, Kolas D, Varanka D, Romero BE, Feng CC, Usery EL, Liebermann J, Sorokine A (2014) An ontology design pattern for surface water features. In: International conference on geographic information science. Springer, Berlin, pp 187–203

  • Spiliopoulos V, Vouros GA, Karkaletsis V (2010) On the discovery of subsumption relations for the alignment of ontologies. Web Semant Sci Serv Agents World Wide Web 8(1):69–88

    Article  Google Scholar 

  • Suchanek FM, Abiteboul S, Senellart P (2011) PARIS: probabilistic alignment of relations, instances, and schema. Proc VLDB Endow 5(3):157–168

    Article  Google Scholar 

  • Sunna W, Cruz IF (2007) Structure-based methods to enhance geospatial ontology alignment. In: International conference on GeoSpatial sematics. Springer, Berlin, pp 82–97

  • Thiéblin É, Haemmerlé O, Hernandez N, dos Santos CT (2017) Towards a complex alignment evaluation dataset. In: Proceedings of the 12th international conference on ontology matching, pp. 217–218. CEUR-WS.org

  • Varanka DE, Usery EL (2015) An applied ontology for semantics associated with surface water features. In: Ahlqvist O, Varanka D, Fritz S, Janowicz K (eds) Land use and land cover semantics: principles, best practices, and prospects. CRC Press, Boca Raton, pp 162–187

    Google Scholar 

  • Vijayasankaran N (2015) Enhanced place name search using semantic gazetteers

  • Vilches-Blázquez L, Ramos J, López-Pellicer FJ, Corcho Ó, Nogueras-Iso J (2009) An approach to comparing different ontologies in the context of hydrographical information. In: Popovich VV, Claramunt C, Schrenk M, Korolenko KV (eds) Information fusion and geographic information systems. Springer, Belrin, pp 193–207

    Chapter  Google Scholar 

  • Wellen CC, Sieber R (2013) Toward an inclusive semantic interoperability: the case of cree hydrographic features. Int J Geogr Inf Sci 27(1):168–191

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the United States Geological Survey under Agreement Number G16AC00120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Cheatham.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheatham, M., Varanka, D., Arauz, F. et al. Alignment of surface water ontologies: a comparison of manual and automated approaches. J Geogr Syst 22, 267–289 (2020). https://doi.org/10.1007/s10109-019-00312-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-019-00312-3

Keywords

Navigation