References
Anselin L (1995) Local indicators of spatial association–LISA. Geogr Anal 27:93–115
Bitter C, Mulligan GF, Dall’erba S (2007) Incorporating spatial variation in housing attribute prices: a comparison of geographically weighted regression and the spatial expansion method. J Geogr Syst 9(1):7–27
Brunsdon C, Comber A (2021) Opening practice: supporting reproducibility and critical spatial data science. J Geogr Syst 23(4):477–496. https://doi.org/10.1007/s10109-020-00334-2
Brunsdon C, Fotheringham AS, Charlton ME (1996) Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr Anal 28(4):281–298
Farber S, Páez A (2007) A systematic investigation of cross-validation in GWR model estimation: empirical analysis and Monte Carlo simulations. J Geogr Syst 9(4):371–396
Fotheringham AS, Brunsdon C (1999) Local forms of spatial analysis. Geogr Anal 31(4):340–358
Fotheringham AS, Oshan TM (2016) Geographically weighted regression and multicollinearity: dispelling the myth. J Geogr Syst 18(4):303–329. https://doi.org/10.1007/s10109-016-0239-5
Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206
Kestens Y, Theriault M, Des Rosiers F (2006) Heterogeneity in hedonic modeling of house prices: looking at buyers’ households profiles. J Geogr Syst 8:61–96
McMillen DP (1996) One hundred fifty years of land values in chicago: a nonparametric approach. J Urban Econ 40(1):100–124
Paez A, Farber S, Wheeler D (2011) A simulation-based study of geographically weighted regression as a method for investigating spatially varying relationships. Environ Plan A 43(12):2992–3010. https://doi.org/10.1068/a44111
Páez A (2021) Open spatial sciences: an introduction. J Geogr Syst 23(4):467–476. https://doi.org/10.1007/s10109-021-00364-4
Wheeler DC, Calder CA (2007) An Assessment of coefficient accuracy in linear regression models with spatially varying coefficients. J Geogr Syst 9(2):145–166
Yang W, Deng M, Tang J, Luo L (2023) Geographically weighted regression with the integration of machine learning for spatial prediction. J Geogr Syst 25(2):213–236. https://doi.org/10.1007/s10109-022-00387-5
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
JGS Editors’ choice article. J Geogr Syst 26, 291–292 (2024). https://doi.org/10.1007/s10109-024-00446-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10109-024-00446-z