Skip to main content

JGS Editors’ choice article

  • Published:
Journal of Geographical Systems Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Anselin L (1995) Local indicators of spatial association–LISA. Geogr Anal 27:93–115

    Article  Google Scholar 

  • Bitter C, Mulligan GF, Dall’erba S (2007) Incorporating spatial variation in housing attribute prices: a comparison of geographically weighted regression and the spatial expansion method. J Geogr Syst 9(1):7–27

    Article  Google Scholar 

  • Brunsdon C, Comber A (2021) Opening practice: supporting reproducibility and critical spatial data science. J Geogr Syst 23(4):477–496. https://doi.org/10.1007/s10109-020-00334-2

    Article  Google Scholar 

  • Brunsdon C, Fotheringham AS, Charlton ME (1996) Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr Anal 28(4):281–298

    Article  Google Scholar 

  • Farber S, Páez A (2007) A systematic investigation of cross-validation in GWR model estimation: empirical analysis and Monte Carlo simulations. J Geogr Syst 9(4):371–396

    Article  Google Scholar 

  • Fotheringham AS, Brunsdon C (1999) Local forms of spatial analysis. Geogr Anal 31(4):340–358

    Article  Google Scholar 

  • Fotheringham AS, Oshan TM (2016) Geographically weighted regression and multicollinearity: dispelling the myth. J Geogr Syst 18(4):303–329. https://doi.org/10.1007/s10109-016-0239-5

    Article  Google Scholar 

  • Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24(3):189–206

    Article  Google Scholar 

  • Kestens Y, Theriault M, Des Rosiers F (2006) Heterogeneity in hedonic modeling of house prices: looking at buyers’ households profiles. J Geogr Syst 8:61–96

    Article  Google Scholar 

  • McMillen DP (1996) One hundred fifty years of land values in chicago: a nonparametric approach. J Urban Econ 40(1):100–124

    Article  Google Scholar 

  • Paez A, Farber S, Wheeler D (2011) A simulation-based study of geographically weighted regression as a method for investigating spatially varying relationships. Environ Plan A 43(12):2992–3010. https://doi.org/10.1068/a44111

    Article  Google Scholar 

  • Páez A (2021) Open spatial sciences: an introduction. J Geogr Syst 23(4):467–476. https://doi.org/10.1007/s10109-021-00364-4

    Article  Google Scholar 

  • Wheeler DC, Calder CA (2007) An Assessment of coefficient accuracy in linear regression models with spatially varying coefficients. J Geogr Syst 9(2):145–166

    Article  Google Scholar 

  • Yang W, Deng M, Tang J, Luo L (2023) Geographically weighted regression with the integration of machine learning for spatial prediction. J Geogr Syst 25(2):213–236. https://doi.org/10.1007/s10109-022-00387-5

    Article  Google Scholar 

Download references

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

JGS Editors’ choice article. J Geogr Syst 26, 291–292 (2024). https://doi.org/10.1007/s10109-024-00446-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10109-024-00446-z