Abstract
An intelligent information retrieval system is presented in this paper. In our approach, which complies with the logical view of information retrieval, queries, document contents and other knowledge are represented by expressions in a knowledge representation language based on the conceptual graphs introduced by Sowa. In order to take the intrinsic vagueness of information retrieval into account, i.e. to search documents imprecisely and incompletely represented in order to answer a vague query, different kinds of probabilistic logic are often used. The search process described in this paper uses graph transformations instead of probabilistic notions. This paper is focused on the content-based retrieval process, and the cognitive facet of information retrieval is not directly addressed. However, our approach, involving the use of a knowledge representation language for representing data and a search process based on a combinatorial implementation of van Rijsbergen’s logical uncertainty principle, also allows the representation of retrieval situations. Hence, we believe that it could be implemented at the core of an operational information retrieval system. Two applications, one dealing with academic libraries and the other concerning audiovisual documents, are briefly presented.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Chein M, Mugnier ML (1992) Conceptual graphs: fundamental notions. Rev d’Intell Artif 6(4):365–406
Chevallet JP, Chiaramella Y (1995) Extending a logic-based model with algebraic knowledge. In: Ruthven I (ed) Proceedings of the final workshop on multimedia information retrieval (Miro ’95), Electronic workshops in computing. Springer, Berlin Heidelberg, New York
Efhimiadis EN (1996) Query expansion. In: Williams ME (ed) Annual review of information systems and technology 31, pp 121–187
Ellis G (1995) Managing complex objects. PhD Thesis, University of Queensland, Australia
Fuhr N (2000) Models in information retrieval. In: Agosti M, Crestani F, Pasi G (eds) Lecture on information retrieval (Lecture notes in computer science 1980). Springer, Berlin Heidelberg New York, pp 21–50
Genest D (2000) Extension du modèle des graphes conceptuels pour la recherche d’informations. PhD Thesis, Université Montpellier 2
Haemmerlé O (1995) CoGITo : une plateforme de développement de logiciels sur les graphes conceptuels. PhD Thesis, Université Montpellier 2
Kowalski G (1997) Information retrieval systems—theory and implementation. Kluwer
Levinson R, Ellis G (1992) Multi-level hierarchical retrieval. Knowl-based Syst 5(3):233–244
Martin P (1997) CGKAT: A knowledge acquisition and retrieval tool using structured documents and ontologies. In: Lukose D, Delugach H, Keeler M, Searle L, Sowa JF (eds) Proceedings of ICCS’97 (Lecture notes in artificial intelligence 1257). Springer, Berlin Heidelberg New York, pp 581–584
Martin P, Eklund P (2000) Knowledge indexation and retrieval and the world wide web. IEEE Intell Syst 15(3):18–25
Mugnier ML (1995) On generalization/specialization for conceptual graphs. J Exp Theoret Artif Intell 7:325–344
Mugnier ML (2000) Knowledge representation and reasonings based on graph homomorphisms. In: Ganter B, Mineau GW (eds) Proceedings of ICCS’00 (Lecture notes in artificial intelligence 1867). Springer, Berlin Heidelberg New York, pp 172–192
Myaeng SH, Khoo C, Li M (1994) Linguistic processing of text for a large-scale conceptual information retrieval system. In: Tepfenhart WM, Dick JP, Sowa JF (eds) Proceedings of ICCS’94 (Lecture notes in artificial intelligence 835). Springer, Berlin Heidelberg New York, pp 69–84
Nanard M, Nanard J (2001) Cumulating and sharing end-users knowledge to improve video indexing in a video digital library. In: Proceedings of the first ACM/IEEE-CS joint conference on digital libraries, Roanoke. ACM Press, pp 282–289
Nie JY, Lepage F (1998) Toward a broader logical model for information retrieval. In: Crestani F, Lalmas M, van Rijsbergen CJ (eds) Information Retrieval: Uncertainty and Logics. Kluwer, pp 17–38
Ounis I (1998) Modeling, indexing and retrieving images using conceptual graphs. In: Quirchmayr G, Schweighofer E, Bench-Capon T (eds) Proceedings of DEXA’98 (Lecture notes in computer science 1460). Springer, Berlin Heidelberg New York, pp 226–239
Rameau (1995) Guide d’indexation Rameau. Bibliothèque nationale de France and agence bibliographique de l’enseignement supérieur
Roussey C, Calabretto S, Pinon JM (2001) A new conceptual graph formalism adapted for multilingual information retrieval purposes. In: Mayr H, Lazansky J, Quirchmayr G, Vogel P (eds) Proceedings of DEXA’2001 (Lecture notes in computer science 2113). Springer, Berlin Heidelberg New York, pp 92–101
Salvat E, Mugnier ML (1996) Sound and complete forward and backward chaining of graph rules. In: Eklund PW, Ellis G, Mann G (eds) Proceedings of ICCS’96 (Lecture notes in artificial intelligence 1115). Springer, Berlin Heidelberg New York, pp 248–262
Smeaton AF (2000) Indexing, browsing, and searching of digital video and digital audio information. In: Agosti M, Crestani F, Pasi G (eds) Lectures on information retrieval (Lecture notes in computer science 1980). Springer, Berlin Heidelberg New York, pp 93–110
Sowa JF (1984) Conceptual structures: information processing in mind and machine. Addison-Wesley
van Rijsbergen CJ (1979) Information retrieval. Butterworths
van Rijsbergen CJ (1986) A non-classical logic for information retrieval. Comput J 29(6):481–485
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Genest, D., Chein, M. A content-search information retrieval process based on conceptual graphs. Knowl Inf Syst 8, 292–309 (2005). https://doi.org/10.1007/s10115-004-0179-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10115-004-0179-0