Skip to main content
Log in

Image annotation techniques based on feature selection for class-pairs

  • Short Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Image annotation technique can be formulated as a multi-class classification problem, which can be solved by the ensemble of multiple class-pair classifiers. Support vector machine (SVM) classifiers based on optimal class-pair feature subsets from the multimedia content description interface (MPEG-7) standard are used as the class-pair classifiers. We use a binary-coded chromosome genetic algorithm (GA) to select optimal class-pair feature subsets, and a bi-coded chromosome GA to simultaneously select optimal class-pair feature subsets and corresponding optimal weight subsets, i.e. optimal class-pair weighted feature subsets. We consider two kinds of methods for class-pair feature selection: a common optimal (or weighted) feature subset is selected for all the class-pairs, and an individual optimal (or weighted) feature subset is selected for each class-pair respectively. Majority voting scheme is used to combine the class-pair SVM classifiers. The experiments are performed on two different image sets to validate the performance of our image annotation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anagnostopoulos A, Broder A, Punera K (2008) Effective and efficient classification on a search-engine model. Knowl Inform Syst 16(2): 129–154

    Article  Google Scholar 

  2. Bober M (2001) MPEG-7 visual shape descriptor. IEEE Trans Circuits Syst Video Technol 11(6): 716–719

    Article  Google Scholar 

  3. Carneiro G, Chan AB, Moreno PJ, Vasconcelos N (2007) Supervised learning of semantic classes for image annotation and retrieval. IEEE Trans Pattern Anal Mach Intell 29(3): 394–410

    Article  Google Scholar 

  4. Chang E, Goh KS, Sychay G, Wu G (2003) CBSA: content-based soft annotation for multimodal image retrieval using Bayes point machines. IEEE Trans Circuits Syst Video Technol 13(1): 26–38

    Article  Google Scholar 

  5. Chang SF, Chen W, Sundaram H (1998) Semantic visual templates: linking visual features to semantics. In: Proceedings of the IEEE international conference of image processing, pp 531–535

  6. Chi MM, Bruzzone L (2006) An ensemble-driven k-NN approach to ill-posed classification problems. Pattern Recognit Lett 27(4): 301–307

    Article  Google Scholar 

  7. Chiang TW, Tsai T (2008) Query color images using user specified wavelet features. Knowl Inform Syst 15(1): 109–129

    Article  MathSciNet  Google Scholar 

  8. Datta R, Joshi D, Wang J (2008) Image retrieval: ideas, influences, and trends of the new age. ACM Comput Surv 40(2): 1–60

    Article  Google Scholar 

  9. Djordjevic D, Izquierdo E (2007) An object-and user-driven system for semantic-based image annotation and retrieval. IEEE Trans Circuits Syst Video Technol 17(3): 313–323

    Article  Google Scholar 

  10. Duygulu P, Banard K, de Freitas JFG, Forsyth DA (2002) Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: Proceedings of the 7th European conference on computer vision, pp 97–112

  11. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1): 119–139

    Article  MATH  MathSciNet  Google Scholar 

  12. Gao YL, Fan JP, Luo HZ, Xue XY, Jain R (2006) Automatic image annotation by incorporating feature hierarchy and boosting to scale up SVM classifiers. In: Proceedings of the 14th international conference of multimedia, pp 901–910

  13. Garcia-Pedrajas N, Ortiz-Boyer D (2006) Improving multiclass pattern recognition by the combination of two strategies. IEEE Trans Pattern Anal Mach Intell 28(6): 1001–1006

    Article  Google Scholar 

  14. Goh KS, Chang EY, Li B (2005) Using one-class and two-class SVMs for multiclass image annotation. IEEE Trans Knowl Data Eng 17(10): 1333–1346

    Article  Google Scholar 

  15. Hamdani TM, Alimi AM, Karray F (2006) Distributed genetic algorithm with bi-coded chromosomes and a new evaluation function for features selection. In: Proceedings of the IEEE congress on evolutionary computation, pp 581–588

  16. Huang SH, Wu QJ, Lai SH (2006) Improved AdaBoost-based image retrieval with relevance feedback via paired feature learning. Multimedia Syst 12(1): 14–26

    Article  Google Scholar 

  17. Jeon J, Lavrenko V, Manmatha R (2003) Automatic image annotation and retrieval using cross-media relevance models. In: Proceedings of SIGIR conference on research and development in information retrieval, pp 119–126

  18. Katakis I, Tsoumakas G, Vlahavas I (2009) Tracking recurring contexts using ensemble classifiers: an application to email filtering. Knowl Inform Syst (in press)

  19. Li J, Wang JZ (2003) Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans Pattern Anal Mach Intell 25(19): 1075–1088

    Google Scholar 

  20. Li W, Sun MS (2006) Incorporating prior knowledge into multi-label boosting for cross-modal image annotation and retrieval. Lect Notes Comput Sci 4182: 404–415

    Article  Google Scholar 

  21. Liu XZ, Zhang L, Li MJ, Zhang HJ, Wang DX (2005) Boosting image classification with LDA-based feature combination for digital photograph management. Pattern Recognit 38(6): 887–901

    Article  Google Scholar 

  22. Liu Y, Zhang D, Lu GJ, Ma WY (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recognit 40(4): 262–282

    Article  MATH  Google Scholar 

  23. Manjunath BS, Ohm JR, Vasudevan VV, Yamada A (2001) Color and texture descriptors. IEEE Trans Circuits Syst Video Technol 11(6): 703–715

    Article  Google Scholar 

  24. Oh IS, Lee JS, Moon BR (2004) Hybrid genetic algorithms for feature selection. IEEE Trans Pattern Anal Mach Intell 26(11): 1424–1437

    Article  Google Scholar 

  25. Ou GB, Murphey YL (2007) Multi-class pattern classification using neural networks. Pattern Recognit 40(1): 4–18

    Article  MATH  Google Scholar 

  26. Peng T, Zuo WL, He FL (2008) SVM based adaptive learning method for text classification from positive and unlabeled documents. Knowl Inform Syst 16(3): 281–301

    Article  Google Scholar 

  27. Qi XJ, Han YT (2007) Incorporating multiple SVMs for automatic image annotation. Pattern Recognit 40(4): 728–741

    Article  MATH  Google Scholar 

  28. Shi R, Chua TS, Lee CH, Gao S (2006) Bayesian learning of hierarchical multinomial mixture models of concepts for automatic image annotation. Lect Notes Comput Sci 4071: 102–112

    Article  Google Scholar 

  29. Tieu K, Viola P (2000) Boosting image retrieval. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 228–235

  30. Wang BX, Japlowicz N (2009) Boosting support vectors for imbalanced data sets. Knowl Inform Syst (in press)

  31. Zhuang Y, Liu X, Pan Y (1999) Apply semantic template to support content-based image retrieval. Lect Notes Comput Sci 3972: 442–449

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjiang Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Li, R., Zhang, Y. et al. Image annotation techniques based on feature selection for class-pairs. Knowl Inf Syst 24, 325–337 (2010). https://doi.org/10.1007/s10115-009-0240-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-009-0240-0

Keywords