Skip to main content

Advertisement

Log in

New possibilistic method for discovering linear local behavior using hyper-Gaussian distributed membership function

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper presents a method to find a model of a system based on the integration of a set of local models. Mainly, properties are sought for the local models: independence of clusters and interpretability of their validity. This has been achieved through the introduction of a possibilistic clustering for the first property and a pre-fixed shape of the membership functions for the second one. A new cost index for the clustering optimization problem has been defined consisting of two terms: one for global error and another for local errors. By giving higher importance to the local errors term, local models valid regionally can be found. To avoid local optima and numerical issues, the parameters of the models are found using global optimization. This new method has been applied to several data sets, and results show how the desired characteristics can be achieved in the resulting models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronovich L, Splieger I (2010) Bulk construction of dynamic clustered metric trees. Knowl Inf Syst 22(2): 211–244

    Article  Google Scholar 

  2. Barcelo-Rico F, Diez J, Bondia J (2010) A comparative study of codification techniques for clustering heart disease database. Biomed Signal Process Control. doi:10.1016/j.bspc.2010.07.004

  3. Bezdek JC (1981) Pattern recognition with fuzzy objective functions algorithms. Plenum Press, New York

    Google Scholar 

  4. Bezdek JC, Pal NR (1998) Some new indexes of cluster validity. IEEE Trans Syst Man Cybern Part B Cybern 28: 301–315

    Article  Google Scholar 

  5. Bezdek J, Ehrlich R, Full W (1984) Fcm: The fuzzy c-means clustering algorithm. Comput Geosci 10: 191–203

    Article  Google Scholar 

  6. Cheng K, Liu L (2009) “best k”: critical clustering structures in categorical datasets. Knowl Inf Syst 20(1): 1–33

    Article  Google Scholar 

  7. de Oliveira J, Pedrycz W (2007) Advances in fuzzy clustering and its applications. Wiley, New York

    Book  Google Scholar 

  8. De Carlo LT (1997) On the meaning and use of Kurtosis. Psychol Methods 2: 292–307

    Article  Google Scholar 

  9. Diez JL (2003) Técnicas de agrupamiento para identificacin y control por modelos locales. PhD thesis, Universitat Politècnica de València

  10. Diez JL, Navarro JL, Sala A (2007) A fuzzy clustering algorithm enhancing local model interpretability. Soft Comput Fusion Found Method Appl 11: 973–983

    Google Scholar 

  11. Diez JL, Sala A, Navarro JL (2005) Target shape possibilistic clustering applied to local-model identification. Engineering Applications of Artificial Intelligence 4th

  12. Kim EY, Kim SY, Ashlock D, Nam D (2009) Multi-k: accurate classification of microarray subtypes using ensemble k-means clustering. BMC Bioinform 10: 260

    Article  Google Scholar 

  13. Egea JA, Rodriguez-Fernandez M, Banga JR, Mart R (2007) Scatter search for chemical and bio-process optimization. J Global Optim 37: 481–503

    Article  MATH  MathSciNet  Google Scholar 

  14. Egea-Larrosa JA (2008) New Heuristics for Global Optimization of Complex bioprocesses. PhD thesis, Universidade de Vigo

  15. Gustafson EE, Kessel WC (1978) Fuzzy clustering with a fuzzy covariance matrix. In: IEEE conference on decision and control, pp 761–766

  16. Hartigan J, Wong MA (1979) A K-means clustering algorithm. JR Stat Soc Ser C 28: 100–108

    MATH  Google Scholar 

  17. Hathaway R, Bezdek J (1993) Switching regression models and fuzzy clustering. IEEE Trans Fuzzy Syst 1(3): 195–204

    Article  Google Scholar 

  18. Abonyi J, Babuska R, Szeifert F (2002) Modified gath-geva fuzzy clustering for identification of takagi-sugeno fuzzy models. IEEE Trans Syst Man Cybern Part B Cybern 32(5): 612–621

    Article  Google Scholar 

  19. Krishnapuram R, Keller JM (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1: 98–110

    Article  Google Scholar 

  20. Emami MR, Turksen IB, Goldenberg AA (1998) Development of a systematic methodology of fuzzy logic modeling. Trans Fuzzy Syst 6: 346–366

    Article  MATH  Google Scholar 

  21. Goebel M, Gruenwald L (1999) A survey of data mining and knowledge discovery software tools. SIGKDD Explor Newsl 1(1): 20–33

    Article  Google Scholar 

  22. Ryoke M, Nakamori Y, Suzuki K (1995) Adaptive fuzzy clustering and fuzzy prediction models. In: Fuzzy Systems, 1995. International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium., Proceedings of 1995 IEEE International Conference on vol 4

  23. Sugeno M, Yasukawa T (1993) A fuzzy-logic based approach to qualitative modelling. Trans Fuzzy Syst 1: 7–31

    Article  Google Scholar 

  24. Chaoji V, Hasan MA, Salem S, Zaki M (2009) Sparcl: an effective and efficient algorithm for mining arbitrary shape-based clusters. Knowl Inf Syst 21(2):201–229

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fátima Barceló-Rico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barceló-Rico, F., Díez, JL. & Bondia, J. New possibilistic method for discovering linear local behavior using hyper-Gaussian distributed membership function. Knowl Inf Syst 30, 377–403 (2012). https://doi.org/10.1007/s10115-011-0385-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-011-0385-5

Keywords

Navigation