Skip to main content
Log in

Discernibility matrix simplification with new attribute dependency functions for incomplete information systems

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Recently, many researches have been done on attribute dependency degree models. In this work, we bring forward three attribute dependency functions for incomplete information systems and investigate their basic properties in detail. Afterward, we apply the proposed models to twelve data sets from the UCI repository of machine learning databases. Finally, using the proposed functions, we perform the discernibility matrix simplification of incomplete information systems. The experimental results show that our proposed functions are more flexible to calculate the degree of each conditional attribute related to the decision attribute for incomplete information systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bhatt RB, Gopal M (2005) On the compact computational domain of fuzzy-rough sets. Pattern Recognit Lett 26(11):1632–1640

    Article  Google Scholar 

  2. Chen YS, Cheng CH (2010) Forecasting PGR of the financial industry using a rough sets classifier based on attribute-granularity. Knowl Inf Syst 25:57–79

    Article  MathSciNet  Google Scholar 

  3. Chen DG, Wang CZ, Hu QH (2007) A new approach to attributes reduction of consistent and inconsistent covering decision systems with covering rough sets. Inf Sci 177(17):3500–3518

    Article  MATH  Google Scholar 

  4. Chen DG, Yang WX, Li FC (2008) Measures of general fuzzy rough sets on a probabilistic space. Inf Sci 178(16):3177–3187

    Article  MathSciNet  MATH  Google Scholar 

  5. Frank A, Asuncion A (2010) UCI machine learning repository (http://archive.ics.uci.edu/ml). University of California, School of Information and Computer Science, Irvine, CA

  6. Hayashi K, Takenouchi T, Shibata T, Kamiya Y, Kato D, Kunieda K, Yamada K, Ikeda K, (2010) Exponential family tensor factorization for missing-values prediction and anomaly detection. In: IEEE 10th international conference on data mining (ICDM). IEEE press, Piscataway, USA, pp 216–225

  7. Hu QH, Xie ZX, Yu DR (2007) Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern Recognit 40(12):3509–3521

    Article  MATH  Google Scholar 

  8. Hu QH, Yu DR, Liu JF, Wu CX (2008) Neighborhood rough set based heterogeneous feature subset selection. Inf Sci 178(18):3577–3594

    Article  MathSciNet  MATH  Google Scholar 

  9. Im S, Rás Z, Wasyluk H (2010) Action rule discovery from incomplete data. Knowl Inf Syst 25:21–33

    Article  Google Scholar 

  10. Jensen R, Shen Q (2004) Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches. IEEE Trans Knowl Data Eng 16(12):1457–1471

    Article  Google Scholar 

  11. Kryszkiewicz M (1998) Rough set approach to incomplete information systems. Inf Sci 112(1–4):39–49

    Article  MathSciNet  MATH  Google Scholar 

  12. Lang GM, Li QG (2010) A new attribute dependency function in information system. In: Proceedings of the second international conference on computational intelligence and software engineering. IEEE press, Piscataway, USA

  13. Leung Y, Li DY (2003) Maximal consistent block technique for rule acquisition in incomplete information systems. Inf Sci 153:85–106

    Article  MathSciNet  MATH  Google Scholar 

  14. Liang JY, Shi ZZ (2004) The information entropy, rough entropy and knowledge granulation in rough set theory. Int J Uncertain Fuzziness Knowl-Based Syst 12(1):37–46

    Article  MathSciNet  MATH  Google Scholar 

  15. Luengo J, García S, Herrera F (2012) On the choice of the best imputation methods for missing values considering three groups of classification methods. Knowl Inf Syst 32(1):77–108

    Article  Google Scholar 

  16. Meng ZQ, Shi ZZ (2009) A fast approach to attribute reduction in incomplete decision systems with tolerance relation-based rough set. Inf Sci 179(16):2774–2793

    Article  MathSciNet  MATH  Google Scholar 

  17. Mi JS, Wu WZ, Zhang WX (2004) Approaches to knowledge reduction based on variable precision rough set model. Inf Sci 159(3–4):255–272

    Article  MathSciNet  MATH  Google Scholar 

  18. Nguyen SH, Nguyen HS (1996) Some efficient algorithms for rough set methods. In: Proceedings of the international Conference on information processing and management of uncertainty on knowledge based systems, pp 1451–1456

  19. Nguyen SH, Nguyen HS (1996) Quantization of real values attributes for control problems. In: Proceedings of the fourth European Congress on Intelligent Techniques and Soft Computing, pp 188–191

  20. Nguyen HS, Nguyen SH, Skowron A (1996) Searching for features defined by hyperplanes. Lecture notes in computer science, vol 1079, 366–375

  21. Pal S, Mitra P (2004) Case generation using rough sets with fuzzy representation. IEEE Trans Knowl Data Eng 16(3):292–300

    Article  Google Scholar 

  22. Pawlak Z (1981) Information systems theoretical foundations. Inf Syst 6(3):205–218

    Article  MathSciNet  MATH  Google Scholar 

  23. Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11(5):341–356

    Article  MathSciNet  MATH  Google Scholar 

  24. Pawlak Z (1991) Rough sets: theoretical aspects of reasoning about data. Kluwer, Boston

    Book  MATH  Google Scholar 

  25. Pawlak Z (2002) Rough sets and intelligent data analysis. Inf Sci 147:1–12

    Article  MathSciNet  MATH  Google Scholar 

  26. Pawlak Z (2003) Rough sets, Bayes’ theorem and flow graphs. In: Meunier BB, Foulloy L, Yager RR (eds) Intelligent systems for information processing: from representation to applications. Elsevier, Amsterdam, pp 243–252

    Chapter  Google Scholar 

  27. Pawlak Z (2003) Elementary rough set granules: toward a rough set processor. In: Pal SK, Polkowski L, Skowron A (eds) Rough-neural computing: techniques for computing with words. Springer, Berlin, pp 5–13

    Google Scholar 

  28. Pawlak Z (2004) Computing, artificial intelligence and information technology decisions rules and flow networks. Eur J Oper Res 154:184–190

    Article  MathSciNet  MATH  Google Scholar 

  29. Pawlak Z, Skowron A (2007) Rudiments of rough sets. Inf Sci 177:3–27

    Article  MathSciNet  MATH  Google Scholar 

  30. Pawlak Z, Skowron A (2007) Rough sets: some extensions. Inf Sci 177:28–40

    Article  MathSciNet  MATH  Google Scholar 

  31. Pawlak Z, Skowron A (2007) Rough sets and boolean reasoning. Inf Sci 177:41–73

    Article  MathSciNet  MATH  Google Scholar 

  32. Qi YS, Wei LH, Sun HJ, Song YQ, Sun QS (2008) Characteristic relations in generalized incomplete information system. In: Proceedings of the first international workshop knowledge discovery data mining. IEEE press, Piscataway, USA, pp 519–523

  33. Ramentol E, Caballero Y, Bello R, Herrera F (2012) SMOTE-RSB: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory. Knowl Inf Syst 33(2):245–265

    Article  Google Scholar 

  34. Skowron A (2005) Rough sets and vague concepts. Fundamenta Informaticae 64(1–4):417–431

    MathSciNet  MATH  Google Scholar 

  35. Skowron A, Nguyen HS (1995) Quantization of real values attributes. In: Proceedings of the second joint annual conference on information sciences, pp 34–37

  36. Skowron A, Rauszer C (1992) The discernibility matrices and functions in information systems. In: Slowinski R (ed) Intelligent decision support-handbook of applications and advances of the rough sets theory. Kluwer, Dordrecht, pp 331–362

  37. Skowron A, Stepaniuk J (1996) Tolerance approximation spaces. Fundamenta Informaticae 27(2–3): 245–253

    Google Scholar 

  38. Skowron A, Stepaniuk J (2010) Approximation spaces in rough granular computing. Fundamenta Informaticae 100:141–157

    MathSciNet  MATH  Google Scholar 

  39. Skowron A, Stepaniuk J, Swiniarski R (2012) Modeling rough granular computing based on approximation spaces. Inf Sci 184:20–43

    Article  Google Scholar 

  40. Skowron A, Szczuka M (2009) Toward interactive computations: a rough-granular approach. In: Koronacki J, Wierzchon S, Ras Z, Kacprzyk J (eds) Commemorative volume to honor Ryszard Michalski. Springer, Berlin, pp 1–20

  41. Skowron A, Wasilewski P (2010) Information systems in modeling interactive computations on granules. In: Szczuka M, Kryszkiewicz M, Ramanna S, Jensen R, Hu QH (eds) Proceedings of the 7th international conference on rough sets and current trends in computing, RSCTC 2010. Lecture notes in artificial intelligence. Springer, Berlin, pp 730–739

  42. Skowron A, Wasilewski P (2011) Information systems in modeling interactive computations on granules. Theor Comput Sci 412:5939–5959

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang XZ, Li CG (2005) A new definition of sensitivity for RBFNN and its applications to feature reduction. Lecture notes in computer science, vol 3496, pp 81–86

  44. Wang XZ, Tsang E, Zhao SY, Chen DG, Yeung D (2007) Learning fuzzy rules from fuzzy examples based on rough set techniques. Inf Sci 177(20):4493–4514

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang J, Wang J (2001) Reduction algorithms based on discernibility matrix: the ordered attributes method. J Comput Sci Technol 16:489–504

    Article  MATH  Google Scholar 

  46. Wang H, Wang SH (2010) Mining incomplete survey data through classification. Knowl Inf Syst 24: 221–233

    Google Scholar 

  47. Wang XZ, Wang YD, Wang LJ (2004) Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recognit Lett 25(10):1123–1132

    Article  Google Scholar 

  48. Wang GY, Yu H, Yang DC (2002) Decision table reduction based on conditional information entropy. Chin J Comput 25:759–766

    MathSciNet  Google Scholar 

  49. Wang XZ, Zhai JH, Lu SX (2008) Induction of multiple fuzzy decision trees based on rough set technique. Inf Sci 178(16):3188–3202

    Article  MathSciNet  MATH  Google Scholar 

  50. Xu WH, Zhang XY, Zhong JM, Zhang WX (2010) Attribute reduction in ordered information systems based on evidence theory. Knowl Inf Syst 25:169–184

    Article  Google Scholar 

  51. Yamaguchi D (2009) Attribute dependency functions considering data efficiency. Int J Approx Reason 51(1):89–98

    Google Scholar 

  52. Yang T, Li QG (2010) Reduction about approximation spaces of covering generalized rough sets. Int J Approx Reason 51(3):335–345

    Google Scholar 

  53. Yang XB, Yang JY, Wu C, Yu DJ (2008) Dominance-based rough set approach and knowledge reductions in incomplete ordered information system. Inf Sci 178(4):1219–1234

    Article  MathSciNet  MATH  Google Scholar 

  54. Yao YY (2008) Probabilistic rough set approximations. Int J Approx Reason 49(2):255–271

    Article  MATH  Google Scholar 

  55. Yao YY (2010) Three-way decisions with probabilistic rough sets. Inf Sci 180(3):341–353

    Article  Google Scholar 

  56. Yao YY (2011) The superiority of three-way decisions in probabilistic rough set models. Inf Sci 181(6):1080–1096

    Article  MATH  Google Scholar 

  57. Yao YY, Zhao Y (2008) Attribute reduction in decision-theoretic rough set models. Inf Sci 178(17): 3356–3373

    Google Scholar 

  58. Yao YY, Zhao Y (2009) Discernibility matrix simplification for constructing attribute reducts. Inf Sci 179(7):867–882

    Article  MathSciNet  MATH  Google Scholar 

  59. Yao YY, Zhou B, Luo JG (2010) A three-way decision approach to email spam filtering. In: Proceedings of the 23rd Canadian conference on artificial intelligence. Springer, Berlin, pp 28–39

  60. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

  61. Zhang HY, Zhang WX, Wu WZ (2009) On characterization of generalized interval-valued fuzzy rough sets on two universes of discourse. Int J Approx Reas 51(1):56–70

    Article  MATH  Google Scholar 

  62. Zhao K, Wang J (2002) A reduction algorithm meeting users’ requirements. J Comput Sci Technol 17(5):578–593

    Article  MATH  Google Scholar 

  63. Zhou XZ, Huang B (2003) Rough set-based attribute reduction under incomplete information systems. J Nanjing Univ Sci Technol 27(5):630–635

    Google Scholar 

  64. Zhu W, Wang FY (2003) Reduction and axiomization of covering generalized rough sets. Inf Sci 152: 217–230

    Google Scholar 

  65. Ziarko W (2008) Probabilistic approach to rough sets. Int J Approx Reason 49(2):272–284

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers very much for their professional comments and valuable suggestions. This work is supported by the National Natural Science Foundation of China (NO. 11071061) and the National Basic Research Program of China (NO. 2010CB334706, 2011CB311808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingguo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, G., Li, Q. & Guo, L. Discernibility matrix simplification with new attribute dependency functions for incomplete information systems. Knowl Inf Syst 37, 611–638 (2013). https://doi.org/10.1007/s10115-012-0589-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-012-0589-3

Keywords

Navigation