Skip to main content
Log in

A modified gravitational search algorithm based on sequential quadratic programming and chaotic map for ELD optimization

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Gravitational search algorithm (GSA) is a stochastic search algorithm based on the law of gravity and mass interactions. For the purpose of enhancing the performance of standard GSA, this paper proposes a robust hybrid gravitational search algorithm (RHGSA). This algorithm makes the best of ergodicity of PieceWise Linear chaotic map to explore the global search while utilizing the sequential quadratic programming to accelerate the local search. To verify the performance of RHGSA, different types of benchmark functions including five unimodal functions and ten functions provided by CEC 2005 special session are tested in the experiments. Comparisons with other new variants of POS and GSA show that RHGSA obtains a promising performance on the majority of the test problems. Furthermore, a practical application problem, the economic load dispatch problem of power systems (ELD), is solved to further evaluate RHGSA. Compared with the previous evolutionary algorithms applied to ELD problem, RHGSA can get better results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chu W, Gao X, Sorooshian S (2011) Handling boundary constraints for particle swarm optimization in high-dimensional search space. Inf Sci 181:4569–4581

    Article  Google Scholar 

  2. Engelbrecht AP (2006) Fundamentals of computational swarm intelligence. Wiley, USA

    Google Scholar 

  3. Huang H, Qin H, Hao Z, Lim A (2012) Example-based learning particle swarm optimization for continuous optimization. Inf Sci 182:125–138

    Article  MATH  MathSciNet  Google Scholar 

  4. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471

    Article  MATH  MathSciNet  Google Scholar 

  5. Khajehzadeh M, El-Shafie A, Raihan Taha M (2010) Modified particle swarm optimization for probabilistic slope stability analysis. Int J Phys Sci 5(15): 2248–2258

    Google Scholar 

  6. Cheng YM, Li L, Chi S, Wei WB (2007) Particle swarm optimization algorithm for the location of the critical non-circular failure surface in two-dimensional slope stability analysis. Comput Geotech 34(2):92–103

    Google Scholar 

  7. Ye M, Wang X, Xu Y (2009) Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization. Int J Hydrogen Energy 34:981–989

    Article  Google Scholar 

  8. Papa JP, Pagnin A, Schellini SA, Spadotto A, Guido RC, Ponti M, Chiachia G, Falcao AX (2011) Feature selection through gravitational search algorithm. In: IEEE international conference on acoustics, speech and signal processing (ICASSP)

  9. Pourhabibi T, Imani MB, Haratizadeh S (2011) Feature selection on Persian fonts: a comparative analysis on GAA, GESA and GA. Procedia Comput Sci 3:1249–1255

    Article  Google Scholar 

  10. Chuang LY, Tsai SW, Yang CH (2011) Improved binary particle swarm optimization using catfish effect for feature selection. Expert Syst Appl 38:12699–12707

    Article  Google Scholar 

  11. Basu M (2008) Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II. Electr Power Energy Syst 30:140–149

    Article  Google Scholar 

  12. Shaw B, Mukherjee V, Ghoshal SP (2012) A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems. Electr Power Energy Syst 35:21–33

    Article  Google Scholar 

  13. Behrang MA, Assareh E, Ghalambaz M, Assari MR (2011) Forecasting future oil demand in Iran using GSA (Gravitational Search Algorithm). Energy 36:5649–5654

    Article  Google Scholar 

  14. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248

    Article  MATH  Google Scholar 

  15. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2010) BGSA: binary gravitational search algorithm. Nat Comput 9:727–745

    Article  MATH  MathSciNet  Google Scholar 

  16. Sarafrazi S, Nezamabadi-pour H, Saryazdi S (2011) Disruption: a new operator in gravitational search algorithm. Sci Iran 18:539–548

    Article  Google Scholar 

  17. Li C, Zhou J (2011) Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm. Energy Convers Manag 52:374–381

    Article  Google Scholar 

  18. Shaw B, Mukherjee V, Ghoshal SP (2012) A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems. Int J Electr Power Energy Syst 35:21–33

    Article  Google Scholar 

  19. Yin M, Hu Y, Yang F, Li X, Gu W (2011) A novel hybrid K-harmonic means and gravitational search algorithm approach for clustering. Expert Syst Appl 38:9319–9324

    Article  Google Scholar 

  20. Khajehzadeh M, Taha MR, El-Shafie A, Eslami M (2012) A modified gravitational search algorithm for slope stability analysis. Eng Appl Artif Intell (in Press). Corrected Proof, Available online 2 February 2012

  21. Rashedi E (2007) Gravitational search algorithm. M. Sc. Thesis, Electrical Engineering Department, Shahid Bahonar University of Kerman, Iran

  22. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2007) Allocation of static var compensator using gravitational search algorithm. In: Proceedings of the first joint conference on fuzzy and intelligent systems. Mashhad, Iran

  23. Baranovsky A, Daems D (1995) Design of one-dimensional chaotic maps with prescribed statistical properties. Int J Bifurcat Chaos 5:1585–1598

    Article  MATH  MathSciNet  Google Scholar 

  24. Liu L, Zhong WM, Qian F (2010) An improved chaos-particle swarm optimization algorithm. J East China University Sci Technol (Natural Science Edition) 36:267–272

    Google Scholar 

  25. Luo Q, Yi D (2008) A co-evolving framework for robust particle swarm optimization. Appl Math Comput 199:611–622

    Article  MATH  MathSciNet  Google Scholar 

  26. Mendel E, Krohling RA, Campos M (2011) Swarm algorithms with chaotic jumps applied to noisy optimization problems. Inf Sci 181:4494–4514

    Article  MATH  MathSciNet  Google Scholar 

  27. Xiang T, Liao X, Wong K (2007) An improved particle swarm optimization algorithm combined with piecewise linear chaotic map. Appl Math Comput 190:1637–1645

    Article  MATH  MathSciNet  Google Scholar 

  28. Tripathi PK, Bandyopadhyay S, Pal SK (2007) Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Inf Sci 177:5033–5049

    Article  MATH  MathSciNet  Google Scholar 

  29. Wilson RB (1963) A simplicial algorithm for concave programming. Ph.D. thesis. Harvard University, Cambridge, MA

  30. Fletcher R (1987) Practical methods of optimization. Wiley, New York

    MATH  Google Scholar 

  31. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82–102

    Article  Google Scholar 

  32. Suganthan P, Hansen N, Liang J, Deb K, Chen Y, Auger A, Tiwari S (2005) Definitions and evaluation criteria for the CEC 2005 Special Session on Real-Parameter Optimization. Technical Report, KanGAL Report Number 2005005, Nanyang Technological University, Singapore and Kanpur Genetic Algorithms Laboratory, IIT Kanpur

  33. Damodaran Purushothaman, Vélez-Gallego MC (2012) A simulated annealing algorithm to minimize makespan of parallel batch processing machines with unequal job ready times. Expert Syst Appl 39:1451–1458

    Article  Google Scholar 

  34. Musharavati F, Hamouda ASM (2011) Modified genetic algorithms for manufacturing process planning in multiple parts manufacturing lines. Expert Syst Appl 38:10770–10779

    Article  Google Scholar 

  35. Tayarani-N M, Akbarzadeh-T M (2008) Magnetic optimization algorithms a new synthesis. In: IEEE congress on evolutionary computation

  36. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6:58–73

    Article  Google Scholar 

  37. Mahadevan K, Kannan PS (2010) Comprehensive learning particle swarmoptimization for reactive power dispatch. Appl Soft Comput 10:641–652

    Article  Google Scholar 

  38. Coelho LdS (2010) Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst Appl 37:1676–1683

    Article  MathSciNet  Google Scholar 

  39. Li C, Zhou J, Xiao J, Xiao H (2012) Parameters identification of chaotic system by chaotic gravitational search algorithm. Chaos Solitons Fractals 4:539–547

    Article  Google Scholar 

  40. Han X, Chang X (2012) A chaotic digital secure communication based on a modified gravitational search algorithm filter. Inf Sci 208:14–27

    Article  Google Scholar 

  41. Venayagamoorthy GK, Mohagheghi S, Hernandez J-C, Harley RG (2008) Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evol Comput 12:171–195

    Article  Google Scholar 

  42. Chiang CL (2005) Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels. IEEE Trans Power Syst 20:1690–1699

    Article  Google Scholar 

  43. Manoharan PS, Kannan PS, Baskar S, Iruthayarajan MW (2008) Penalty parameter-less constraint handling scheme based evolutionary algorithm solutions to economic dispatch. IET Gener Transm Distrib 2:478–490

    Article  Google Scholar 

  44. Wang Y, Li B, Weise T (2010) Estimation of distribution and differential evolution cooperation for large scale economic load dispatch optimization of power systems. Inf Sci 180:2405–2420

    Article  Google Scholar 

  45. Güvenç U, Sönmez Y, Duman S, Yörükeren N (2012) Combined economic and emission dispatch solution using gravitational search algorithm. Sci Iran (in Press). Corrected Proof, Available online 25 June 2012

Download references

Acknowledgments

This paper is supported by the National Natural Science Foundation of China (Grant No. 51035007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoHong Han.

Appendix A

Appendix A

See Tables 7 and 8

Table 7 The unimodal test functions used in the experiments, where \(Dim\) is the dimension, and \(f_{min}\) is the global optimum
Table 8 The five CEC 2005 benchmark functions used in the experiments, where \(Dim\) is the dimension, and \(f_{min}\) is the global optimum

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, X., Quan, L. & Xiong, X. A modified gravitational search algorithm based on sequential quadratic programming and chaotic map for ELD optimization. Knowl Inf Syst 42, 689–708 (2015). https://doi.org/10.1007/s10115-013-0701-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-013-0701-3

Keywords

Navigation