Skip to main content
Log in

A topic-biased user reputation model in rating systems

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

In rating systems like Epinions and Amazon’s product review systems, users rate items on different topics to yield item scores. Traditionally, item scores are estimated by averaging all the ratings with equal weights. To improve the accuracy of estimated item scores, user reputation [a.k.a., user reputation (UR)] is incorporated. The existing algorithms on UR, however, have underplayed the role of topics in rating systems. In this paper, we first reveal that UR is topic-biased from our empirical investigation. However, existing algorithms cannot capture this characteristic in rating systems. To address this issue, we propose a topic-biased model (TBM) to estimate UR in terms of different topics as well as item scores. With TBM, we develop six topic-biased algorithms, which are subsequently evaluated with experiments using both real-world and synthetic data sets. Results of the experiments demonstrate that the topic-biased algorithms effectively estimate UR across different topics and produce more robust item scores than previous reputation-based algorithms, leading to potentially more robust rating systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://itunes.apple.com/.

  2. http://www.epinions.com/.

  3. http://answers.yahoo.com/.

  4. http://iask.sina.com.cn.

  5. Without loss of generality, we normalize \(R_{ij}\) to [0,1].

References

  1. Adler BT, de Alfaro L (2007) A content-driven reputation system for the wikipedia. In: Proceedings of the 16th international conference on World Wide Web, WWW ’07. ACM, New York, NY, USA, pp 261–270

  2. Blei DM et al (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022

    MATH  Google Scholar 

  3. Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. In: Proceedings of the seventh international conference on World Wide Web, pp 107–117

  4. Burke R et al (2006) Classification features for attack detection in collaborative recommender systems. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD ’06, pp 542–547

  5. Cao X et al (2010) A generalized framework of exploring category information for question retrieval in community question answer archives. In: Proceedings of the 19th international conference on World Wide Web, WWW ’10, pp 201–210

  6. Clauset A et al (2009) Power-law distributions in empirical data. SIAM Rev 51:661–703

    Article  MathSciNet  MATH  Google Scholar 

  7. De Alfaro L et al (2011) Reputation systems for open collaboration. Commun ACM 54(8):81–87

    Article  Google Scholar 

  8. de Kerchove C, Van Dooren P (2010) Iterative filtering in reputation systems. SIAM J Matrix Anal Appl 31:1812–1834

    Article  MATH  Google Scholar 

  9. Deng H et al (2009) Enhancing expertise retrieval using community-aware strategies. In: Proceedings of the 18th ACM conference on information and knowledge management, CIKM ’09, pp 1733–1736

  10. Du TC et al (2009) Managing knowledge on the Web—extracting ontology from HTML Web. Decis support Syst 47:319–331

    Article  Google Scholar 

  11. Gupta M et al (2003) A reputation system for peer-to-peer networks. In: Proceedings of the 13th international workshop on network and operating systems support for digital audio and video, pp 144–152

  12. Haveliwala TH (2002) Topic-sensitive PageRank. In: Proceedings of the 11th international conference on World Wide Web, WWW ’02, pp 517–526

  13. Hofmann T (1999) Probabilistic latent semantic indexing. In: Proceedings of the 22nd annual international ACM SIGIR conference on research and development in information retrieval, SIGIR ’99, pp 50–57

  14. Jin Y et al (2010) Topic-sensitive tag ranking. In: The 20th international conference on pattern recognition, pp 629–632

  15. Jøsang A et al (2007) A survey of trust and reputation systems for online service provision. Decis Support Syst 43(2):618–644

    Article  Google Scholar 

  16. Laureti P et al (2006) Information filtering via iterative refinement. Europhys Lett 75:1006

    Article  MathSciNet  Google Scholar 

  17. Li B et al (2011) Question routing in community question answering: putting category in its place. In: Proceedings of the 20th ACM international conference on information and knowledge management, CIKM ’11, pp 2041–2044

  18. Li R-H et al (2012) Robust reputation-based ranking on bipartite rating networks. In: Proceedings of the 2012 SIAM international conference on data mining, pp 612–623

  19. Ling G et al (2013) A unified framework for reputation estimation in online rating systems. In: Proceedings of the twenty-third international joint conference on artificial intelligence, IJCAI’13, pp 2670–2676

  20. Medo M, Wakeling JR (2010) The effect of discrete vs. continuous-valued ratings on reputation and ranking systems. Europhys Lett 91(4):6

    Article  Google Scholar 

  21. Mishra A, Bhattacharya A (2011) Finding the bias and prestige of nodes in networks based on trust scores. In: Proceedings of the 20th international conference on World Wide Web, WWW ’11, pp 567–576

  22. Mizzaro S (2003) Quality control in scholarly publishing: a new proposal. J Am Soc Inf Sci Technol 54(11):989–1005

    Article  Google Scholar 

  23. Noy NF, Mcguinness DL (2001) Ontology development 101: a guide to creating your first ontology. Tech. rep

  24. Phan X-H, Nguyen C-T (2007) GibbsLDA++: A C/C++ implementation of latent Dirichlet allocation (LDA). Tech. rep

  25. Resnick P et al (2000) Reputation systems. Commun ACM 43(12):45–48

    Article  Google Scholar 

  26. Resnick P, Zeckhauser R (2002) Trust among strangers in Internet transactions: empirical analysis of eBay’s reputation system. Adv Appl Microecon 11:127–157

    Article  Google Scholar 

  27. Sakai T et al (2011) Using graded-relevance metrics for evaluating community QA answer selection. In: Proceedings of the fourth ACM international conference on Web Search and Data Mining (WSDM ’11), pp 187–196

  28. Tang J et al (2012) eTrust: understanding trust evolution in an online world. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’12, pp 253–261

  29. Vydiswaran VV et al (2011) Content-driven trust propagation framework. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’11, pp 974–982

  30. Yu Y-K et al (2006) Decoding information from noisy, redundant, and intentionally distorted sources. Physica A Stat Mech Its Appl 371(2):732–744

    Article  Google Scholar 

  31. Zhou Y-B et al (2011) A robust ranking algorithm to spamming. Europhys Lett 94(4):48002

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this paper was fully supported by the National Grand Fundamental Research 973 Program of China (No. 2014CB340405), the Shenzhen Basic Research Program (No. JCYJ20120619152636275), the Research Grants Council of the Hong Kong Special Administrative Region, China (Nos. CUHK 413212 and CUHK 415212), and the Microsoft Research Asia Grant in Big Data Research (No. FY13-RES-SPONSOR-036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baichuan Li.

Appendix

Appendix

In this appendix, we give the proof that Lemma 1 holds for TB-\(L_1\)-MAX and TB-\(L_1\)-MIN. Theorem 1 and 2 for them and other topic-biased algorithms are similar to the proof of TB-\(L_1\)-AVG.

1.1 TB-\(L_1\)-MAX

Proof

If \(s=1\), let

$$\begin{aligned} o_h=\left\{ \begin{array}{ll} \displaystyle {\arg \max _{o_j\in N_i}b_{jk}|R_{ij}-r_j^1|}, &{}\quad if \,\, c_{ik}^1 > c_{ik}^0\\ \displaystyle {\arg \max _{o_j\in N_i}b_{jk}|R_{ij}-r_j^0|}, &{}\quad otherwise,\\ \end{array} \right. \end{aligned}$$

then

$$\begin{aligned} |r_j^2-r_j^1|&= |\frac{1}{|M_j|}\displaystyle {\sum _{u_i\in M_j}R_{ij}\sum _{t_k\in T}c_{ik}^1b_{jk}}-\frac{1}{|M_j|}\displaystyle {\sum _{u_i\in M_j}R_{ij}\sum _{t_k\in T}c_{ik}^0b_{jk}}| \\&\le \frac{1}{|M_j|}\displaystyle {\sum _{u_i\in M_j}R_{ij}\sum _{t_k\in T}b_{jk}|c_{ik}^1-c_{ik}^0|} \\&= \frac{1}{|M_j|}\displaystyle {\sum _{u_i\in M_j}R_{ij}\sum _{t_k\in T}b_{jk}|\lambda \max _{o_j\in N_i}b_{jk}|R_{ij}-r_j^1|-\lambda \max _{o_j\in N_i}b_{jk}|R_{ij}-r_j^0||} \\&\le \frac{1}{|M_j|}\displaystyle {\sum _{u_i\in M_j}R_{ij}\sum _{t_k\in T}b_{jk}|\lambda b_{hk}|r_h^1-r_h^0||}\\&\le \frac{\lambda }{|M_j|}\displaystyle {\sum _{u_i\in M_j}R_{ij}|r_\alpha ^1-r_\alpha ^0|}\\&\le \lambda \cdot |r_\alpha ^1-r_\alpha ^0|. \end{aligned}$$

Assume when \(s=t\) the lemma holds, then we show \(s=t+1\) the lemma still holds. Let

$$\begin{aligned} o_x=\left\{ \begin{array}{ll} \displaystyle {\arg \max _{o_j\in N_i}b_{jk}|R_{ij}-r_j^t|}, &{}\quad if\,\, c_{ik}^t > c_{ik}^{t-1}\\ \displaystyle {\arg \max _{o_j\in N_i}b_{jk}|R_{ij}-r_j^{t-1}|}, &{}\quad otherwise,\\ \end{array} \right. \end{aligned}$$

then

$$\begin{aligned} |r_j^{t+1}-r_j^t|&\le \frac{1}{|M_j|}\displaystyle {\sum _{u_i\in M_j}R_{ij}\sum _{t_k\in T}b_{jk}|c_{ik}^t-c_{ik}^{t-1}|} \\&\le \frac{1}{|M_j|}\displaystyle {\sum _{u_i\in M_j}R_{ij}\sum _{t_k\in T}b_{jk}\cdot |\lambda \max _{o_j\in N_i}b_{jk}|R_{ij}-r_j^t|-\lambda \max _{o_j\in N_i}b_{jk}|R_{ij}-r_j^{t-1}||} \\&\le \frac{\lambda }{|M_j|}\displaystyle {\sum _{u_i\in M_j}R_{ij}\sum _{t_k\in T}b_{jk}\cdot b_{xk}|r_x^t-r_x^{t-1}|} \\&\le \frac{\lambda }{|M_j|}\displaystyle {\sum _{u_i\in M_j}R_{ij}\sum _{t_k\in T}b_{jk}\cdot \lambda ^t|r_\alpha ^1-r_\alpha ^0|} \\&\le \lambda ^t|r_\alpha ^1-r_\alpha ^0|. \end{aligned}$$

This completes the proof. \(\square \)

1.2 TB-\(L_1\)-MIN

Proof

If \(s=1\), let

$$\begin{aligned} o_h=\left\{ \begin{array}{ll} \displaystyle {\arg \min _{o_j\in N_i}b_{jk}|R_{ij}-r_j^0|}, &{}\quad if\,\, c_{ik}^1 > c_{ik}^0\\ \displaystyle {\arg \min _{o_j\in N_i}b_{jk}|R_{ij}-r_j^1|}, &{}\quad otherwise,\\ \end{array} \right. \end{aligned}$$

then

$$\begin{aligned} |r_j^2-r_j^1|&= |\frac{1}{|M_j|}\displaystyle {\sum _{u_i\in M_j}R_{ij}\sum _{t_k\in T}c_{ik}^1b_{jk}}-\frac{1}{|M_j|}\displaystyle {\sum _{u_i\in M_j}R_{ij}\sum _{t_k\in T}c_{ik}^0b_{jk}}| \\&\le \frac{1}{|M_j|}\displaystyle {\sum _{u_i\in M_j}R_{ij}\sum _{t_k\in T}b_{jk}|c_{ik}^1-c_{ik}^0|} \\&= \frac{1}{|M_j|}\displaystyle {\sum _{u_i\in M_j}R_{ij}\sum _{t_k\in T}b_{jk}|\lambda \min _{o_j\in N_i}b_{jk}|R_{ij}-r_j^1|-\lambda \min _{o_j\in N_i}b_{jk}|R_{ij}-r_j^0||} \\&\le \frac{1}{|M_j|}\displaystyle {\sum _{u_i\in M_j}R_{ij}\sum _{t_k\in T}b_{jk}|\lambda b_{hk}|r_h^1-r_h^0|}\\&\le \frac{\lambda }{|M_j|}\displaystyle {\sum _{u_i\in M_j}R_{ij}\sum _{t_k\in T}b_{jk}|r_\alpha ^1-r_\alpha ^0|}\\&\le \lambda \cdot |r_\alpha ^1-r_\alpha ^0|. \end{aligned}$$

Assume when \(s=t\) the lemma holds, then we show \(s=t+1\) the lemma still holds. Let

$$\begin{aligned} o_x=\left\{ \begin{array}{ll} \displaystyle {\arg \min _{o_j\in N_i}b_{jk}|R_{ij}-r_j^{t-1}|}, &{}\quad if\,\, c_{ik}^t > c_{ik}^{t-1}\\ \displaystyle {\arg \min _{o_j\in N_i}b_{jk}|R_{ij}-r_j^t|}, &{}\quad otherwise,\\ \end{array} \right. \end{aligned}$$

then

$$\begin{aligned} |r_j^{t+1}-r_j^t|&\le \frac{1}{|M_j|}\displaystyle {\sum _{u_i\in M_j}R_{ij}\sum _{t_k\in T}b_{jk}|c_{ik}^t-c_{ik}^{t-1}|} \\&\le \frac{1}{|M_j|}\displaystyle {\sum _{u_i\in M_j}R_{ij}\sum _{t_k\in T}b_{jk}\cdot |\lambda \min _{o_j\in N_i}b_{jk}|R_{ij}-r_j^t|-\lambda \min _{o_j\in N_i}b_{jk}|R_{ij}-r_j^{t-1}||} \\&\le \frac{\lambda }{|M_j|}\displaystyle {\sum _{u_i\in M_j}R_{ij}\sum _{t_k\in T}b_{jk}\cdot b_{xk}|r_x^t-r_x^{t-1}|} \\&\le \frac{\lambda }{|M_j|}\displaystyle {\sum _{u_i\in M_j}R_{ij}\lambda ^{t-1}|r_\alpha ^1-r_\alpha ^0|} \\&\le \lambda ^t|r_\alpha ^1-r_\alpha ^0|. \end{aligned}$$

This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Li, RH., King, I. et al. A topic-biased user reputation model in rating systems. Knowl Inf Syst 44, 581–607 (2015). https://doi.org/10.1007/s10115-014-0780-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-014-0780-9

Keywords

Navigation