Skip to main content

Advertisement

Log in

Synergy of two mutations based immune multi-objective automatic fuzzy clustering algorithm

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

In this paper, a synergy of two mutation based immune multi-objective automatic fuzzy clustering algorithm (STMIMAFC) is proposed for the task of automatically evolving the number of clusters as well as a proper partitioning of data set. In the proposed algorithm, firstly, two new mutation operators, which are designed for the different structures of chromosomes respectively, are cooperated with each other to generate the new individuals. Secondly, we propose an exponential function based compactness validity index. The proposed method has been extensively compared with a synergy of genetic algorithm and multi-objective differential evolution, multi-objective modified differential evolution based fuzzy clustering, multi-objective clustering with automatic \(k\)-determination over a test suit of several real life data sets and synthetic data sets. Experimental results indicate the superiority of the STMIMAFC over other three compared clustering algorithms on clustering accuracy and running time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Burnet FM (1957) A modification of Jerne’s theory of antibody production using the concept of clonal selection. Austral J Sci 20(1):67–69

    Google Scholar 

  2. Bezdek JC, Dunn JC (1975) Optimal fuzzy partitions: a heuristic for estimating the parameters in a mixture of normal distributions. IEEE Trans Comput Soc 24(8):835–838

    Article  MATH  Google Scholar 

  3. Ben-Hur A, Guyon I (2003) Detecting stable clusters using principal component analysis in methods in molecular biology. In: Brownstein MJ, Kohodursky A (eds) Methods and protocols. Functional genomics. Humana press, Clifton, pp 159–182

    Chapter  Google Scholar 

  4. De Castro LN, Zuben FJ (1999) Artificial immune systems: Part I Basic Theory and Applications. Technical Report-RT DCA 01/99: 90–105

  5. De Castro LN, Timmis J (2002) Artificial immune systems, a new computational intelligence approach. Springer, Berlin

    MATH  Google Scholar 

  6. Du HF, Jiao LC, Wang SA (2002) Clonal operator and antibody clone algorithms. In: Proceedings of the first international conference on machine learning and cybernetics, pp 506–510

  7. Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MATH  MathSciNet  Google Scholar 

  8. Das S, Abraham A, Konar A (2008) Automatic clustering using an improved differential evolution algorithm. IEEE Trans Syst Man Cybern A Syst Hum 38(1):218–237

    Article  Google Scholar 

  9. Dasgupta D, Yu S, Nino F (2011) Recent advances in artificial immune systems: models and applications. Appl Soft Comput 11(2):1574–1587

    Article  Google Scholar 

  10. Fei W, Ping L, Arnd CK et al (2012) Improving clustering by learning a bi-stochastic data similarity matrix. Knowl Inf Syst 32(2):351–382

    Article  Google Scholar 

  11. Garcia S, Molina D, Lozano M et al (2009) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behavior: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics 15:617–644

    Article  MATH  Google Scholar 

  12. Hubert A (1985) Comparing partitions. J Classif 2(1):193–198

    Article  MathSciNet  Google Scholar 

  13. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323

    Article  Google Scholar 

  14. Julia H, Joshua K (2006) An evolutionary approach to multi-objective clustering. IEEE Trans Evolut Comput 11(1):56–76

    Google Scholar 

  15. Kwon SH (1998) Cluster validity index for fuzzy clustering. Electron Lett 34(22):2176–2177

    Article  Google Scholar 

  16. Kundu D, Suresh K, Ghosh S et al (2009) Automatic clustering using a synergy of genetic algorithm and multi-objective differential evolution. In: Corchado E et al (eds) Hybrid artificial intelligence systems. lecture notes in computer science, vol 5572. Springer, Berlin, pp 177–186

  17. Katharina M, Andreas K, Michael W et al (2012) Multi-objective frequent termset clustering. Knowl Inf Syst 30(3):715–738

    Article  Google Scholar 

  18. Liu RC, Zhang XR, Yang N, Lei QF, Jiao LC (2012) Immunodomaince based clonal selection clustering algorithm source. Appl Soft Comput 12(1):302–312

    Article  Google Scholar 

  19. Liu R, Jiao L, Zhang X et al (2012) Gene transposon based clone selection algorithm for automatic clustering. Inf Sci 204:1–22

    Article  Google Scholar 

  20. Maulik U, Bandyopadhyay S (2003) Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. IEEE Trans Geosci Remote Sens 41(5):1075–1081

    Article  Google Scholar 

  21. Maulik U, Saha I (2010) Automatic fuzzy clustering using modifed differential evolution for image classification. IEEE Trans Geosci Remote Sens 48(9):3503–3510

    Article  Google Scholar 

  22. Nizar B, Djemel Z (2012) A countable infinite mixture model for clustering and feature selection. Knowl Inf Syst 33(2):351–370

    Article  Google Scholar 

  23. Omran M, Salman A, Engelbrecht A (2006) Dynamic clustering using particle swarm optimization with application in unsupervised image classification. Pattern Anal Appl 8(4):332–344

    Article  MathSciNet  Google Scholar 

  24. Pal NR, Pal SK (1992) Some properties of the exponential entropy. Inform Sci 66(1–2):119–137

    Article  MATH  MathSciNet  Google Scholar 

  25. Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recognit 26(9):1277–1294

    Article  Google Scholar 

  26. Pal NR, Bezdek JC (1995) On cluster validity for the fuzzy c-means model. IEEE Trans Fuzzy Syst 3(3):370–379

    Article  Google Scholar 

  27. Pakhira MK, Bandyopadhyay S, Maulik U (2004) Validity index for crisp and fuzzy clusters. Pattern Recognit 37(3):487–501 Pergamon Press, New York

    Article  MATH  Google Scholar 

  28. Rand W (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–850

    Article  Google Scholar 

  29. Storn R, Price K (1995) Differential evolutiona simple and efficient adaptive scheme for global optimization over continuous spaces. Tech Rep. International Computer Science Institute, pp 22–25

  30. Saha S, Bandyopadhyay S (2010) A new multiobjective clustering technique based on the concepts of stability and symmetry. Knowl Inf Syst 23(1):1–27

    Article  Google Scholar 

  31. Saha I, Maulikb U, Plewczynski D (2011) A new multi-objective technique for differential fuzzy clustering. Appl Soft Comput 11(2):2765–2776

    Article  Google Scholar 

  32. Xie XL, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 13(8):841–847

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and the reviewers for helpful comments that greatly improved the paper. This work was supported by the National Natural Science Foundation of China (Nos. 61373111, 61272279, 61103119 and 61203303); the Fundamental Research Funds for the Central Universities (Nos. K50511020014, K5051302084, K50510020011, K5051302049, and K5051302023); and the Provincial Natural Science Foundation of Shaanxi of China (No. 2014JM8321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruochen Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Zhang, L., Li, B. et al. Synergy of two mutations based immune multi-objective automatic fuzzy clustering algorithm. Knowl Inf Syst 45, 133–157 (2015). https://doi.org/10.1007/s10115-014-0805-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-014-0805-4

Keywords

Navigation