Abstract
Visual representations are an essential element in human–computer interaction and can be conceived as a collection of graphical objects arranged in a two-dimensional space. It is quite natural to model visual representations through the qualitative relationships holding between their objects, and therefore, qualitative spatial relations are a fundamental way of representing spatial knowledge. To this aim, in this paper we present a framework of qualitative spatial relations providing a general, domain-independent approach to specify visual representations.

























Similar content being viewed by others
References
Allen JF Maintaining knowledge about temporal intervals. Commun ACM 26(11):832–843. doi:10.1145/182.358434
Apache.org (2015) Apache commons scxml. http://commons.apache.org/proper/commons-scxml
Balbiani P, Condotta J, del Cerro LF (1998) A model for reasoning about bidemsional temporal relations. In: Proceedings of the sixth international conference on principles of knowledge representation and reasoning (KR’98), Trento, Italy, 2–5 June 1998, pp 124–130
Chen J, Cohn AG, Liu D, Wang S, Ouyang J, Yu Q (2015) A survey of qualitative spatial representations. Knowl Eng Rev 30:106–136. http://journals.cambridge.org/article_S0269888913000350
Clementini E, Di Felice P, Hernández D (1997) Qualitative representation of positional information. Artif Intell 95(2):317–356. doi:10.1016/S0004-3702(97)00046-5
Clementini E, Felice PD, Oosterom PV (1993) A small set of formal topological relationships suitable for end-user interaction. In: Proceedings of the third international symposium on advances in spatial databases, SSD ’93, Springer, London, pp 277–295. http://dl.acm.org/citation.cfm?id=647223.718898
Cohn AG, Li S, Liu W, Renz J (2014) Reasoning about topological and cardinal direction relations between 2-dimensional spatial objects. J Artif Intell Res (JAIR) 51:493–532. doi:10.1613/jair.4513
Cohn AG, Randell DA, Cui Z (1995) Taxonomies of logically defined qualitative spatial relations. Int J Hum Comput Stud 43(5–6):831–846. doi:10.1006/ijhc.1995.1077
Della Penna G, Magazzeni D, Orefice S (2012) A spatial relation-based framework to perform visual information extraction. Knowl Inf Syst 30(3):667–692. doi:10.1007/s10115-011-0394-4
Devlin P (2007) Brachytherapy: applications and techniques. Lippincott Williams & Wilkins, Philadelphia
Du Y, Liang F, Sun Y (2012) Integrating spatial relations into case-based reasoning to solve geographic problems. Knowl Based Syst 33:111–123
Dube MP, Egenhofer MJ ( 2014) Partitions to improve spatial reasoning. In: Proceedings of the 1st ACM SIGSPATIAL PhD workshop, SIGSPATIAL PhD ’14, ACM, New York, NY, USA, pp 1:1–1:5. doi:10.1145/2694859.2694864
Egenhofer MJ, Franzosa RD (1991) Point set topological relations. Int J Geogr Inf Syst 5(2):161–174. doi:10.1080/02693799108927841
Egenhofer MJ, Mark DM, Herring J ( 1994) The 9-intersection: formalism and its use for natural-language spatial predicates. Technical Report 94-1, National Center for Geographic Information and Analysis
Feder J (1971) Plex languages. Inf Sci 3(3):225–241. doi:10.1016/S0020-0255(71)80008-7
Frank AU (1991) Qualitative spatial reasoning with cardinal directions. In: Proceedings 7th Austrian conference on artificial intelligence, ÖGAI-91, Wien, 24–27 Sept 1991, pp 157–167
Freksa C (1992) Using orientation information for qualitative spatial reasoning. In: Theories and methods of spatio-temporal reasoning in geographic space, Proceedings of international conference GIS - from space to territory: Theories and methods of spatio-temporal reasoning, Pisa, Italy, 21–23 Sept 1992, pp 162–178. doi:10.1007/3-540-55966-3_10
Fuccella V, Costagliola G (2015) Unistroke gesture recognition through polyline approximation and alignment. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems, CHI 2015, Seoul, Republic of Korea, 18–23 April 2015, pp 3351–3354. doi:10.1145/2702123.2702505
Goyal R, Egenhofer M (2001) Similarity of cardinal directions. In: Jensen C, Schneider M, Seeger B, Tsotras V (eds) Advances in spatial and temporal databases, vol 2121, lecture notes in computer science. Springer, Berlin, pp 36–55. doi:10.1007/3-540-47724-1_3
Hernández D, Clementini E, Felice PD ( 1995) Qualitative distances. In: COSIT, pp 45–57. doi:10.1007/3-540-60392-1_4
Kong J, Zhang K, Zeng X (2006) Spatial graph grammars for graphical user interfaces. ACM Trans Comput Hum Interact 13(2):268–307. doi:10.1145/1165734.1165739
Kor A-L, Bennett B (2013) A hybrid reasoning model for “whole and part” cardinal direction relations. Adv Artif Intell 3(3–3):3. doi:10.1155/2013/205261
Krantz S (1999) Handbook of complex variables. Birkhäuser Basel, Boston. doi:10.1007/978-1-4612-1588-2
Kunze L, Doreswamy KK, Hawes N (2014) Using qualitative spatial relations for indirect object search. In: 2014 IEEE international conference on robotics and automation, ICRA 2014, Hong Kong, China, May 31–June 7, 2014, pp 163–168. doi:10.1109/ICRA.2014.6906604
Li S, Cohn AG (2012) Reasoning with topological and directional spatial information. Comput Intell 28(4):579–616. doi:10.1111/j.1467-8640.2012.00431.x
Li S, Liu W (2015) Cardinal directions: a comparison of direction relation matrix and objects interaction matrix. Int J Geogr Inf Sci 29(2):194–216. doi:10.1080/13658816.2014.954580
Li S, Long Z, Liu W, Duckham M, Both A (2015) On redundant topological constraints. Artif Intell 225(C):51–76. doi:10.1016/j.artint.2015.03.010
Li S, Ying M (2003) Region connection calculus: its models and composition table. Artif Intell 145(1–2):121–146
Lober WB, Trigg LJ, Bliss D, Brinkley JM (2001) Iml: an image markup language. In: Proceedings AMIA symposium, pp 403–7. http://www.biomedsearch.com/nih/IML-image-markup-language/11825219.html
Moens M-F (2006) Information extraction: algorithms and prospects in a retrieval context, vol 21 of the information retrieval series. Springer, New York
Moratz R ( 2006) Representing relative direction as a binary relation of oriented points. In: ECAI 2006, 17th European conference on artificial intelligence, Aug 29–Sept 1, 2006, Riva del Garda, Italy, including prestigious applications of intelligent systems (PAIS 2006), Proceedings’, pp 407–411
Moratz R, Ragni M (2008) Qualitative spatial reasoning about relative point position. J Vis Lang Comput 19(1):75–98. doi:10.1016/j.jvlc.2006.11.001
Mossakowski T, Moratz R (2012) Qualitative reasoning about relative direction of oriented points. Artif Intell 180–181:34–45. doi:10.1016/j.artint.2011.10.003
Navarrete I, Morales A, Sciavicco G, Cardenas-Viedma M (2013) Spatial reasoning with rectangular cardinal relations. Ann Math Artif Intell 67(1):31–70. doi:10.1007/s10472-012-9327-5
Pokrajac D, Hoskinson RL, Obradovic Z (2003) Modeling spatial-temporal data with a short observation history. Knowl Inf Syst 5(3):368–386. doi:10.1007/s10115-002-0094-1
Randell DA, Cui Z, Cohn AG ( 1992) A spatial logic based on regions and connection. In: Proceedings of the 3rd international conference on principles of knowledge representation and reasoning (KR’92). Cambridge, MA, 25-29 Oct 1992, pp 165–176
Schneider M, Chen T, Viswanathan G (2012) Cardinal directions between complex regions. ACM Trans Database Syst 37(2):8:1–8:40. doi:10.1145/2188349.2188350
Skiadopoulos S, Koubarakis M (2004) Composing cardinal direction relations. Artif Intell 152(2):143–171
Sun H (2009) Efficient algorithms for spatial configuration information retrieval. Knowl Based Syst 22(6):403–409
Tang X (2010) A quantitative directional relations model considering topology and distance. Int J Image Graph Signal Process 2(2):18–24
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Della Penna, G., Magazzeni, D. & Orefice, S. A formal framework to represent spatial knowledge. Knowl Inf Syst 51, 311–338 (2017). https://doi.org/10.1007/s10115-016-0975-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10115-016-0975-3