Skip to main content
Log in

Three iteratively reweighted least squares algorithms for \(L_1\)-norm principal component analysis

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Principal component analysis (PCA) is often used to reduce the dimension of data by selecting a few orthonormal vectors that explain most of the variance structure of the data. \(L_1\) PCA uses the \(L_1\) norm to measure error, whereas the conventional PCA uses the \(L_2\) norm. For the \(L_1\) PCA problem minimizing the fitting error of the reconstructed data, we propose three algorithms based on iteratively reweighted least squares. We first develop an exact reweighted algorithm. Next, an approximate version is developed based on eigenpair approximation when the algorithm is near convergent. Finally, the approximate version is extended based on stochastic singular value decomposition. We provide convergence analyses, and compare their performance against benchmark algorithms in the literature. The computational experiment shows that the proposed algorithms consistently perform the best and the scalability is improved as we use eigenpair approximation and stochastic singular value decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Iteratively reweighted least squares (IRLS) is an algorithmic framework to solve weighted least squares where the weights depend on the model parameters. Since the weights change based on the model parameters, iterations are needed until some convergence or a termination criteria are met.

  2. http://dynresmanagement.com/uploads/3/3/2/9/3329212/wl1pca.zip.

  3. http://dynresmanagement.com/uploads/3/3/2/9/3329212/pca_instance_park_klabjan.zip.

References

  1. Baccini A, Besse P, de Faguerolles A (March 1996) A \(L_1\)-norm PCA and a heuristic approach. In: Proceedings of the international conference on ordinal and symbolic data analysis, pp 359–368

  2. Bache K, Lichman M (2013) UCI Machine Learning Repository

  3. Brooks J, Dula J, Boone E (2013) A pure \(L_1\)-norm principal component analysis. Comput Stat Data Anal 61:83–98

    Article  MathSciNet  MATH  Google Scholar 

  4. Brooks J, Jot S (2012) pcaL1: An implementation in R of three methods for \(L_1\)-norm principal component analysis. Optimization Online

  5. Candés EJ, Li X, Ma Y, Wright J (2011) Robust principal component analysis? J ACM 58(3):11

    Article  MathSciNet  MATH  Google Scholar 

  6. Choulakian V (2006) \(L_1\)-norm projection pursuit principal component analysis. Comput Stat Data Anal 50(6):1441–1451

    Article  MathSciNet  MATH  Google Scholar 

  7. Croux C, Ruiz-Gazen A (2005) High breakdown estimators for principal components: the projection-pursuit approach revisited. J Multivar Anal 95(1):206–226

    Article  MathSciNet  MATH  Google Scholar 

  8. Daubechies I, DeVore R, Fornasier M, Gntrk CS (2010) Iteratively reweighted least squares minimization for sparse recovery. Commun Pure Appl Math 63(1):1–38

    Article  MathSciNet  MATH  Google Scholar 

  9. Galpin J, Hawkins D (1987) Methods of \(L_1\) estimation of a covariance matrix. Comput Stat Data Anal 5(4):305–319

    Article  MathSciNet  MATH  Google Scholar 

  10. Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 185:1–17

    Article  Google Scholar 

  11. Halko N, Martinsson PG, Tropp JA (2011) Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev 53(2):217–288

    Article  MathSciNet  MATH  Google Scholar 

  12. Jolliffe I (2002) Principal component analysis. Springer, New York

    MATH  Google Scholar 

  13. Jorgensen M (2006) Iteratively reweighted least squares. Wiley, New York

    Book  Google Scholar 

  14. Jot S, Brooks P, Visentin A, Park YW (2016) pcaL1: \(L_1\)-norm PCA methods. R package version 1.4.1

  15. Ke Q, Kanade T (June 2005) Robust \(L_1\) norm factorization in the presence of outliers and missing data by alternative convex programming. In: Proceedings of the 2005 IEEE computer society conference on computer vision and pattern recognition, pp 739–746

  16. Kwak N (2008) Principal component analysis based on \(L_1\)-norm maximization. IEEE Trans Pattern Anal Mach Intell 30(9):1672–1680

    Article  Google Scholar 

  17. Lax PD (2007) Linear algebra and its applications. Wiley, Hoboken

    MATH  Google Scholar 

  18. Li G, Chen Z (1985) Projection-pursuit approach to robust dispersion matrices and principal components: primary theory and monte carlo. J Am Stat Assoc 80(391):759–766

    Article  MATH  Google Scholar 

  19. Markopoulos PP, Karystinos GN, Pados DA (2014) Optimal algorithms for \(L_1\)-subspace signal processing. IEEE Trans Signal Process 62(19):5046–5058

    Article  MathSciNet  Google Scholar 

  20. McCoy M, Tropp JA (2011) Two proposals for robust PCA using semidefinite programming. Electron J Stat 5:1123–1160

    Article  MathSciNet  MATH  Google Scholar 

  21. Nie F, Huang H, Ding C, Luo D, Wang H (June 2011) Robust principal component analysis with non-greedy \(L_1\)-norm maximization. In: Proceeding of 22nd international conference on artificial intelligence, pp 1433–1438

  22. Park YW, Klabjan D (2016) Iteratively reweighted least squares algorithms for \(L_1\)-norm principal component analysis. In 2016 IEEE international conference on data mining, Barcelona

  23. Roweis S (1998) EM Algorithms for PCA and SPCA. In: Advances in neural information processing systems, pp 626–632

  24. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  25. Shmueli Y, Wolf G, Averbuch A (2012) Updating kernel methods in spectral decomposition by affinity perturbations. Linear Algebra Appl 437:1356–1365

    Article  MathSciNet  MATH  Google Scholar 

  26. Wen Z, Yin W (2013) A feasible method for optimization with orthogonality constraints. Math Program 142(1–2):397–434

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Woong Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Y.W., Klabjan, D. Three iteratively reweighted least squares algorithms for \(L_1\)-norm principal component analysis. Knowl Inf Syst 54, 541–565 (2018). https://doi.org/10.1007/s10115-017-1069-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-017-1069-6

Keywords

Navigation