Abstract
The traditional databases are not capable of handling unstructured data and high volumes of real-time datasets. Diverse datasets are unstructured lead to big data, and it is laborious to store, manage, process, analyze, visualize, and extract the useful insights from these datasets using traditional database approaches. However, many technical aspects exist in refining large heterogeneous datasets in the trend of big data. This paper aims to present a generalized view of complete big data system which includes several stages and key components of each stage in processing the big data. In particular, we compare and contrast various distributed file systems and MapReduce-supported NoSQL databases concerning certain parameters in data management process. Further, we present distinct distributed/cloud-based machine learning (ML) tools that play a key role to design, develop and deploy data models. The paper investigates case studies on distributed ML tools such as Mahout, Spark MLlib, and FlinkML. Further, we classify analytics based on the type of data, domain, and application. We distinguish various visualization tools pertaining three parameters: functionality, analysis capabilities, and supported development environment. Furthermore, we systematically investigate big data tools and technologies (Hadoop 3.0, Spark 2.3) including distributed/cloud-based stream processing tools in a comparative approach. Moreover, we discuss functionalities of several SQL Query tools on Hadoop based on 10 parameters. Finally, We present some critical points relevant to research directions and opportunities according to the current trend of big data. Investigating infrastructure tools for big data with recent developments provides a better understanding that how different tools and technologies apply to solve real-life applications.



















Similar content being viewed by others
Notes
Institute of Electrical and Electronics Engineers.
References
The size of the world wide web (the internet). http://worldwidewebsize.com/
Mattmann CA (2013) Computing: a vision for data science. Nature 493(7433):473–475
National Aeronautics and Space Administration. https://www.nasa.gov/
Clavin W (2013) Managing the deluge of ‘big data’ from space. NASA Jet Propulsion Labratory
Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw 54(15):2787–2805
SCB Intelligence (2008) Six technologies with potential impacts on us interests out to 2025. National Intelligent Concil, Tech. Rep
Yu S, Liu M, Dou W, Liu X, Zhou S (2017) Networking for big data: a survey. IEEE Commun Surv Tutor 19(1):531–549
Pouyanfar S, Yang Y, Chen S-C, Shyu M-L, Iyengar SS (2018) Multimedia big data analytics: a survey. ACM Comput Surv 51(1):10
Alaba FA, Othman M, Hashem IAT, Alotaibi F (2017) Internet of things security: a survey. J Netw Comput Appl 88:10–28
Zikopoulos P, Eaton C, et al (2011) Understanding big data: analytics for enterprise class hadoop and streaming data. ISBN: 0071790535
Chen M, Mao S, Liu Y (2014) Big data: a survey. Mob Netw Appl 19(2):171–209
Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, Khan SU (2015) The rise of big data on cloud computing: review and open research issues. Inf Syst 47:98–115
Ma C, Zhang HH, Wang X (2014) Machine learning for big data analytics in plants. Trends Plant Sci 19(12):798–808
Laney D (2013) 3d data management: controlling data volume, velocity and variety. META Group Research Note 6(70), 1
Fan W, Bifet A (2013) Mining big data: current status, and forecast to the future. ACM sIGKDD Explor Newsl 14(2):1–5
Demchenko Y, De Laat C, Membrey P (2014) Defining architecture components of the big data ecosystem. In: Collaboration technologies and systems (CTS), 2014 international conference on, pp 104–112
Fernández A, del Río S, López V, Bawakid A, del Jesus MJ, Benítez JM, Herrera F (2014) Big data with cloud computing: an insight on the computing environment, mapreduce, and programming frameworks. Wiley Interdiscip Rev: Data Min Knowl Discov 4(5):380–409
Assunção MD, Calheiros RN, Bianchi S, Netto MAS, Buyya R (2015) Big data computing and clouds: trends and future directions. J Parallel Distrib Comput 79:3–15
Emani CK, Cullot N, Nicolle C (2015) Understandable big data: a survey. Comput Sci Rev 17:70–81
Schuelke-Leech B-A, Barry B, Muratori M, Yurkovich BJ (2015) Big data issues and opportunities for electric utilities. Renew Sustain Energy Rev 52:937–947
O’Leary DE (2015) Big data and privacy: emerging issues. IEEE Intell Syst 30(6):92–96
Kune R, Konugurthi PK, Agarwal A, Chillarige RR, Buyya R (2016) The anatomy of big data computing. Softw: Pract Exp 46(1):79–105
Bello-Orgaz G, Jung JJ, Camacho D (2016) Social big data: recent achievements and new challenges. Inf Fusion 28:45–59
Bajaber F, Elshawi R, Batarfi O, Altalhi A, Barnawi A, Sakr S (2016) Big data 2.0 processing systems: taxonomy and open challenges. J Grid Comput 14(3):379–405
Nadal S, Herrero V, Romero O, Abell A, Franch X, Vansummeren S, Valerio D (2017) A software reference architecture for semantic-aware big data systems. Inf Softw Technol 90:75–92
Big data and veracity challenges. https://www.isical.ac.in/~acmsc/TMW2014/LVS.pdf
Gandomi A, Haider M (2015) Beyond the hype: big data concepts, methods, and analytics. Int J Inf Manag 35(2):137–144
Lee I (2017) Big data: dimensions, evolution, impacts, and challenges. Bus Horiz 60(3):293–303
Kung S-Y (2015) Visualization of big data. In: Cognitive informatics and cognitive computing (ICCI* CC), 2015 IEEE 14th international conference on, pp 447–448
Strohbach M, Ziekow H, Gazis V, Akiva N (2015) Towards a big data analytics framework for IoT and smart city applications. In: Modeling and processing for next-generation big-data technologies. pp 257–282. ISBN: 14-9783319385006
Wu X, Zhu X, Wu G-Q, Ding W (2014) Data mining with big data. IEEE Trans Knowl Data Eng 26(1):97–107
Wu X, Chen H, Wu G, Liu J, Zheng Q, He X, Zhou A, Zhao Z-Q, Wei B, Ming G (2015) Knowledge engineering with big data. IEEE Intell Syst 30(5):46–55
Wu X, Chen H, Liu J, Gongqing W, Ruqian L, Zheng N (2017) Knowledge engineering with big data (bigke): a 54-month, 45-million rmb, 15-institution national grand project. IEEE Access 5:12696–12701
Venner J, Wadkar S, Siddalingaiah M (2014) Pro apache hadoop. ISBN-13: 9781430248637
Pavlo A, Paulson E, Rasin A, Abadi DJ, DeWitt DJ, Madden S, Stonebraker M (2009) A comparison of approaches to large-scale data analysis. In: Proceedings of the 2009 ACM SIGMOD international conference on management of data, pp 165–178
Teradata. http://www.teradata.com/Press-Releases/2016/Teradata-Announces-the-World%E2%80%99s-Most-Powerful
Chang L, Wang Z, Ma T, Jian L, Ma L, Goldshuv A, Lonergan L, Cohen J, Welton C, Sherry G et al (2014) HAWQ: a massively parallel processing SQL engine in hadoop. In: Proceedings of the 2014 ACM SIGMOD international conference on management of data, pp 1223–1234
Greenplum architecture. http://greenplum.org/gpdb-sandbox-tutorials/ introduction-greenplum-database-architecture/
Ibm netezza. https://www-01.ibm.com/software/data/netezza/
Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun ACM 51(1):107–113
Valiant LG (1990) A bridging model for parallel computation. Commun ACM 33(8):103–111
Lenharth A, Nguyen D, Pingali K (2016) Parallel graph analytics. Commun ACM 59(5):78–87
Apache hama project. https://hama.apache.org/
Malewicz G, Austern MH, Bik AJC, Dehnert JC, Horn I, Leiser N, Czajkowski G (2010) Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD international conference on management of data, pp 135–146
Apache giraph project. http://giraph.apache.org/
Zhang H, Chen G, Ooi BC, Tan K-L, Zhang M (2015) In-memory big data management and processing: a survey. IEEE Trans Knowl Data Eng 27(7):1920–1948
Cai Q, Zhang H, Guo W, Chen G, Ooi BC, Tan K-L, Wong WF (2018) Memepic: towards a unified in-memory big data management system. IEEE Trans Big Data
Lim H, Han D, Andersen DG, Kaminsky M (2014) Mica: a holistic approach to fast in-memory key-value storage. USENIX, pp 429–444
Kuznetsov SD, Poskonin AV (2014) Nosql data management systems. Program Comput Softw 40(6):323–332
In-memory storage engine. https://docs.mongodb.com/manual/core/inmemory/
Chen CLP, Zhang C-Y (2014) Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf Sci 275:314–347
Mazón J-N, Lechtenbörger J, Trujillo J (2009) A survey on summarizability issues in multidimensional modeling. Data Knowl Eng 68(12):1452–1469
Hu H, Wen Y, Chua T-S, Li X (2014) Toward scalable systems for big data analytics: a technology tutorial. IEEE Access 2:652–687
Gantz J, Reinsel D (2011) Extracting value from chaos. IDC iview 1142:1–12
Kouzes RT, Anderson GA, Elbert ST, Gorton I, Gracio DK (2009) The changing paradigm of data-intensive computing. IEEE Comput 42(1):26–34
Labrinidis A, Jagadish HV (2012) Challenges and opportunities with big data. Proc VLDB Endow 5(12):2032–2033
UN Global Pulse (2012) Big data for development: challenges and opportunities. UN Global Pulse, New York
Kambatla K, Kollias G, Kumar V, Grama A (2014) Trends in big data analytics. J Parallel Distrib Comput 74(7):2561–2573
Chen Y, Qin X, Bian H, Chen J, Dong Z, Du X, Gao Y, Liu D, Lu J, Zhang H (2014) A study of SQL-on-hadoop systems. In: Workshop on big data benchmarks, performance optimization, and emerging hardware, pp 154–166
Mohammed EA, Far BH, Naugler C (2014) Applications of the mapreduce programming framework to clinical big data analysis: current landscape and future trends. BioData Min 7(1):1
Yang C, Huang Q, Li Z, Liu K, Hu F (2017) Big data and cloud computing: innovation opportunities and challenges. Int J Digit Earth 10(1):13–53
Oussous A, Benjelloun F-Z, Lahcen AA, Belfkih S (2017) Big data technologies: a survey. J King Saud Univ-Comput Inf Sci
Salloum S, Dautov R, Chen X, Peng PX, Huang JZ (2016) Big data analytics on apache spark. Int J Data Sci Anal, pp 1–20
de Assuncao MD, da Silva Veith A, Buyya R (2018) Distributed data stream processing and edge computing: a survey on resource elasticity and future directions. J Netw Comput Appl 103:1–17
Krumm J, Davies N, Narayanaswami C (2008) User-generated content. IEEE Pervasive Comput 4(7):10–11
White paper: How machine data supports gdpr compliance. https://www.splunk.com/pdfs/white-papers/splunk-how-machine-data-dupports-gdpr-compliance.pdf
Shameer K, Badgeley MA, Miotto R, Glicksberg BS, Morgan JW, Dudley JT (2016) Translational bioinformatics in the era of real-time biomedical, health care and wellness data streams. Briefings in Bioinformatics, bbv118
Marx V (2013) Biology: the big challenges of big data. Nature 498(7453):255–260
Cook CE, Bergman MT, Cochrane G, Apweiler R, Birney E (2017) The european bioinformatics institute in 2017: data coordination and integration. Nucleic Acids Res 46(D1):D21–D29
Akter S, Wamba SF (2016) Big data analytics in e-commerce: a systematic review and agenda for future research. Electron Mark 26(2):173–194
Aws: streaming data. https://aws.amazon.com/streaming-data/
Groenfeldt T, At nyse, the data deluge overwhelms traditional databases. https://www.forbes.com/sites/tomgroenfeldt/2013/02/14/at-nyse-the-data-deluge-overwhelms-traditional-databases/#25cda10f5aab
Sun J, Reddy CK (2013) Big data analytics for healthcare. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 1525–1525
Ranjan R, Georgakopoulos D, Wang L (2016) A note on software tools and technologies for delivering smart media-optimized big data applications in the cloud. Computing 98(1–2):1–5
Lloyd MD, Minor B. Harnessing the power of data in health. https://med.stanford.edu/content/dam/sm/sm-news/documents/StanfordMedicineHealthTrendsWhitePaper2017.pdf
Twitter statistics and facts. https://www.statista.com/topics/737/twitter/
Twitter by the numbers: stats, demographics and fun facts. https://www.omnicoreagency.com/twitter-statistics/
Number of monthly active facebook users worldwide as of 4th quarter 2017. https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
Rob Kitchin (2017) Big data. The International Encyclopedia of Geography
Gudivada VN, Baeza-Yates RA, Raghavan VV (2017) Big data: promises and problems. IEEE Comput 48(3):20–23
Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun Surv Tutor 17(4):2347–2376
Raun J, Ahas R, Tiru M (2016) Measuring tourism destinations using mobile tracking data. Tour Manag 57:202–212
Kitchin R (2014) The data revolution: Big data, open data, data infrastructures and their consequences. Sage, ISBN: 13-9781446287484
Abiteboul S, Manolescu I, Rigaux P, Rousset M-C, Senellart P (2011) Web data management. Cambridge University Press, ISBN-13: 9781107012431
Ghemawat S, Gobioff H, Leung S-T (2003) The google file system. In: ACM SIGOPS operating systems review, vol 37, pp 29–43
Doctorow C (2008) Big data: welcome to the petacenre. Nat News 455(7209):16–21
Ovsiannikov M, Rus S, Reeves D, Sutter P, Rao S, Kelly J (2013) The quantcast file system. Proc VLDB Endow 6(11):1092–1101
Guerraoui R, Schiper A (1996) Fault-tolerance by replication in distributed systems. In: International conference on reliable software technologies, pp 38–57
Wiesmann M, Pedone F, Schiper A, Kemme B, Alonso G (2000) Understanding replication in databases and distributed systems. In: Distributed computing systems, 2000. Proceedings of 20th international conference on, pp 464–474
Shvachko K, Kuang H, Radia S, Chansler R (2010) The hadoop distributed file system. In: 2010 IEEE 26th symposium on mass storage systems and technologies (MSST), pp 1–10
Hdfs architecture. https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
Schmuck FB, Haskin RL (2002) Gpfs: a shared-disk file system for large computing clusters. In: FAST, vol 2, pp 231–244
Jones T, Koniges AE, Yates RK (2000) Performance of the IBM general parallel file system. In: IPDPS, pp 673–681
Limitations: The IBM SONAS system. https://www.ibm.com/support/knowledgecenter/en/STAV45/com.ibm.sonas.doc/adm_limitations.h
Thanh TD, Mohan S, Choi E, Kim SB, Kim P (2008) A taxonomy and survey on distributed file systems. In: Networked computing and advanced information management, 2008. NCM’08. Fourth international conference on 1, pp 144–149
Beaver D, Kumar S, Li HC, Sobel J, Vajgel P (2010) Finding a needle in haystack: facebook’s photo storage. OSDI 10:1–8
Fetterly D, Haridasan M, Isard M, Sundararaman S (2011) Tidyfs: a simple and small distributed file system. In: USENIX annual technical conference, pp 34–34
Quantcast file system. https://www.quantcast.com/wp-content/uploads/2012/09/QC-QFS-One-Pager2.pdf
Mapr file system. https://maprdocs.mapr.com/52/MapROverview/c_maprfs.html
Brewer E (2010) A certain freedom: thoughts on the cap theorem. In: Proceedings of the 29th ACM SIGACT-SIGOPS symposium on principles of distributed computing, pp 335–335
Lourenço JR, Cabral B, Carreiro P, Vieira M, Bernardino J (2015) Choosing the right nosql database for the job: a quality attribute evaluation. J Big Data 2(1):1–26
Buyya R, Calheiros RN, Dastjerdi AV (2016) Big data: principles and paradigms. Morgan Kaufmann, ISBN-13: 9780128053942
Abadi D, Boncz P, Harizopoulos S, Idreos S, Madden S et al (2013) The design and implementation of modern column-oriented database systems. Now 5(3):197–280
Matei G, Bank RC (2010) Column-oriented databases, an alternative for analytical environment. Database Syst J 1(2):3–16
Floratou A, Patel JM, Shekita EJ, Tata S (2011) Column-oriented storage techniques for mapreduce. Proc VLDB Endow 4(7):419–429
Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE (2008) Bigtable: a distributed storage system for structured data. ACM Trans Comput Syst 26(2):1–26
Lakshman A, Malik P (2010) Cassandra: a decentralized structured storage system. ACM SIGOPS Oper Syst Rev 44(2):35–40
Stonebraker M, Abadi DJ, Batkin A, Chen X, Cherniack M, Ferreira M, Lau E, Lin A, Madden S, O’Neil E et al. (2005) C-store: a column-oriented DBMS. In: Proceedings of the 31st international conference on very large data bases, pp 553–564
Boncz PA, Zukowski M, Nes N (2005) Monetdb/x100: hyper-pipelining query execution. CIDR 5:225–237
Idreos S, Groffen F, Nes N, Manegold S, Mullender S, Kersten M (2012) Monetdb: two decades of research in column-oriented database architectures. Bull IEEE Comput Soc Tech Comm Data Eng 35(1):40–45
Sciore E (2007) Simpledb: a simple java-based multiuser syst for teaching database internals. ACM SIGCSE Bull 39(1):561–565
Zukowski M, Boncz P (2012) Vectorwise: beyond column stores. IEEE Data Eng Bull 35(1):21–27
Edward SG, Sabharwal N (2015) Mongodb limitations. In: Practical MongoDB, pp 227–232
Ravendb project. https://ravendb.net/docs/article-page/3.0/csharp
Cross datacenter replication. http://docs.couchbase.com/admin/admin/XDCR/xdcr-intro.html
DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramanian S, Vosshall P, Vogels W (2007) Dynamo: amazon’s highly available key-value store. ACM SIGOPS Oper Syst Rev 41(6):205–220
Basho products-riak products. http://basho.com/products/
Sumbaly R, Kreps J, Gao L, Feinberg A, Soman C, Shah S (2012) Serving large-scale batch computed data with project voldemort. In: Proceedings of the 10th USENIX conference on file and storage technologies, pp 18–18
Gudivada VN, Rao D, Raghavan VV (2014) NoSQL systems for big data management. In: 2014 IEEE World congress on services, pp 190–197
Allegrograph. https://franz.com/agraph/allegrograph/
Hypergraphdb. http://www.hypergraphdb.org/
Infinitegraph. http://www.objectivity.com/products/infinitegraph/
Moniruzzaman ABM, Hossain SA (2013) Nosql database: new era of databases for big data analytics-classification, characteristics and comparison. arXiv preprint arXiv:1307.0191
Apache hbase reference guide. https://hbase.apache.org/apache_hbase_reference_guide.pdf
Transparent data encryption. http://docs.datastax.com/en/archived/datastax_enterprise/4.0/datastax_enterprise/sec/secTDE.html
Khetrapal A, Ganesh V (2006) Hbase and hypertable for large scale distributed storage systems. Dept. of Computer Science, Purdue University, pp 22–28
Apache accumulo project. https://accumulo.apache.org/
Ghaffari Amir, Chechina Natalia, Trinder Phil, Meredith Jon (2013) Scalable persistent storage for Erlang: theory and practice. In: Proceedings of the twelfth ACM SIGPLAN workshop on Erlang, pp 73–74
Vogels W (2009) Eventually consistent. Commun ACM 52(1):40–44
Apache hbase project. https://blogs.apache.org/hbase/entry/hbase_cell_security
Mongodb mannual. https://docs.mongodb.org/manual/core/security-encryption-at-rest
Redis project. https://redis.io/
Random notes on improving the Redis LRU algorithm. http://antirez.com/news/109
Redis cluster specification. https://redis.io/topics/cluster-spec
In-memory storage engine. http://learnmongodbthehardway.com/schema/wiredtiger/
The apache mahout project. https://mahout.apache.org/
Spark 2.3-mllib guide. https://spark.apache.org/releases/spark-release-2-3-0.html#mllib
Flinkml: Machine learning for flink. https://ci.apache.org/projects/flink/flink-docs-release-1.4/dev/libs/ml/
Mllib guide. https://spark.apache.org/docs/1.6.2/mllib-guide.html
Meng X, Bradley J, Yuvaz B, Sparks E, Venkataraman S, Liu D, Freeman J, Tsai D, Amde M, Owen S et al (2016) Mllib: Machine learning in apache spark. JMLR 17(34):1–7
Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J, Venkataraman S, Franklin MJ (2016) Apache spark: a unified engine for big data processing. Commun ACM 59(11):56–65
Machine learning library (mllib) guide. https://spark.apache.org/docs/latest/ml-guide.html
Different default regparam values in als. https://issues.apache.org/jira/browse/SPARK-19787
Spark 2.3, mllib guide. https://spark.apache.org/docs/2.3.0/ml-guide.html
Carbone P, Ewen S, Haridi S, Katsifodimos A, Markl V, Tzoumas K (2015) Apache flink: stream and batch processing in a single engine. Data Eng 38:28–38
Introducing Neo4j Bloom: Graph Data Visualization for Everyone. https://neo4j.com/blog/introducing-neo4j-bloom-graph-data-visualization-for-everyone/
Orange documentation https://orange.biolab.si/docs/
Raghavan UN, Réka A, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E 76(3):036106
Chappell D (2015) Introducing azure machine learning. A guide for technical professionals, sponsored by microsoft corporation
Overview diagram of azure machine learning studio capabilities. https://docs.microsoft.com/en-in/azure/machine-learning/studio/studio-overview-diagram
Azure capabilities, limitations and support. https://docs.microsoft.com/en-us/azure/machine-learning/studio/faq
Ibm cloud/machine learning. https://console.bluemix.net/docs/services/PredictiveModeling/index.html#WMLgettingstarted
Amazon machine learning. https://aws.amazon.com/aml/
Amazon sagemaker features. https://aws.amazon.com/sagemaker/features/
Netflix’s recommendation ml pipeline using apache spark. https://www.dbtsai.com/assets/pdf/2017-netflixs-recommendation-ml-pipeline-using-apache-spark.pdf
Role of spark in transforming ebay’s enterprise data platform. https://databricks.com/session/role-of-spark-in-transforming-ebays-enterprise-data-platform
Number of full-time employees at alibaba from 2012 to 2017. https://www.statista.com/statistics/226794/number-of-employees-at-alibabacom/
Number of active consumers across alibaba’s online shopping. https://www.statista.com/statistics/226927/alibaba-cumulative-active-online-buyers-taobao-tmall/
Huang L, Hu G, Lu X (2009) E-business ecosystem and its evolutionary path: the case of the alibaba group in china. Pacific Asia J Assoc Inf Syst 1(4)
A year of blink at alibaba: apache flink in large scale production. http://www.dataversity.net/year-blink-alibaba/
Gupta P, Sharma A, Jindal R (2016) Scalable machine-learning algorithms for big data analytics: a comprehensive review. Wiley Interdiscip Rev: Data Min Knowl Discov 6(6):194–214
Alibaba Blink: Real-time computing for big-time gains. https://medium.com/@alitech_2017/alibaba-blink-real-time-computing-for-big-time-gains-707fdd583c26
Ji X, Chun SA, Cappellari P, Geller J (2017) Linking and using social media data for enhancing public health analytics. J Inf Sci 43(2):221–245
Kanaujia PKM, Pandey M, Rautaray SS (2017) Real time financial analysis using big data technologies. In: I-SMAC (IoT in social, mobile, analytics and cloud)(I-SMAC), 2017 international conference on, pp 131–136
Moe WW, Schweidel DA (2017) Opportunities for innovation in social media analytics. J Prod Innov Manag 34(5):697–702
Psyllidis A, Bozzon A, Bocconi S, Bolivar CT (2015) A platform for urban analytics and semantic data integration in city planning. In: International conference on computer-aided architectural design futures, pp 21–36
Gust G, Flath C, Brandt T, Ströhle P, Neumann D (2016) Bringing analytics into practice: evidence from the power sector
Nguyen D, Lenharth A, Pingali K (2013) A lightweight infrastructure for graph analytics. In: Proceedings of the twenty-fourth ACM symposium on operating systems principles, pp 456–471
Baesens B, Van Vlasselaer V, Verbeke W (2015) Fraud analytics: a broader perspective. Fraud analytics using descriptive, predictive, and social network techniques: a guide to data science for fraud detection, pp 313–346
Xu Z, Mei L, Chuanping H, Liu Y (2016) The big data analytics and applications of the surveillance system using video structured description technology. Cluster Comput 19(3):1283–1292
Bisias D, Flood M, Lo AW, Valavanis S (2012) A survey of systemic risk analytics. Annu Rev Financ Econ 4(1):255–296
Sagiroglu S, Sinanc D (2013) Big data: a review. In: Collaboration technologies and systems (CTS), 2013 international conference on, pp 42–47
Rabkin A, Arye M, Sen S, Pai VS, Freedman MJ (2014) Aggregation and degradation in JetStream: streaming analytics in the wide area. In: NSDI vol 14, 275–288
Zhang L, Stoffel A, Behrisch M, Mittelstadt S, Schreck T, Pompl R, Weber S, Last H, Keim D (2012) Visual analytics for the big data era comparative review of state-of-the-art commercial systems. In: Visual analytics science and technology (VAST), 2012 IEEE conference on, pp 173–182
Waller MA, Fawcett SE (2013) Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. J Bus Logist 34(2):77–84
Chen H, Chiang RHL, Storey VC (2012) Business intelligence and analytics: from big data to big impact. MIS Q 36(4):1165–1188
Raghupathi W, Raghupathi V (2013) An overview of health analytics. J Health Med Inform 4(3):1–11
Cook DJ, Holder LB (2006) Mining graph data. Wiley, London
Fortunato S (2010) Community detection in graphs. Phys Rep 486(3):75–174
Xin RS, Gonzalez JE, Franklin MJ, Stoica I (2013) Graphx: a resilient distributed graph system on spark. In: First international workshop on graph data management experiences and systems 2(1–2):6
Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C (2011) Graphlab: A distributed framework for machine learning in the cloud. arXiv preprint arXiv:1107.0922
Introducing gelly: Graph processing with apache flink. https://flink.apache.org/news/2015/08/24/introducing-flink-gelly.html
Liu B (2007) Web data mining: exploring hyperlinks, contents, and usage data. Springer, Berlin. ISBN-13: 9783642194597
Wesley R, Eldridge M, Terlecki PT (2011) An analytic data engine for visualization in tableau. In: Proceedings of the 2011 ACM SIGMOD international conference on management of data, pp 1185–1194
García M, Harmsen B (2012) Qlikview 11 for developers. Packt Publishing Ltd
Microstrategy enterprise analytics and mobility. http://www.microstrategy.com/us/capabilities/visualizations
Tibco spotfire. http://spotfire.tibco.com/
Abousalh-Neto NA, Kazgan S (2012) Big data exploration through visual analytics. In: Visual analytics science and technology (VAST), 2012 IEEE conference on, pp 285–286
Advizor. http://www.advizorsolutions.com/
Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431–432
Batagelj V, Mrvar A (1998) Pajek-program for large network analysis. Connections 21(2):47–57
Smith MA, Shneiderman B, Milic-Frayling N, Mendes Rodrigues E, Barash V, Dunne C, Capone T, Perer A, Gleave E (2009) Analyzing (social media) networks with NodeXL. In: Proceedings of the fourth international conference on communities and technologies, pp 255–264
Bastian M, Heymann S, Jacomy M et al (2009) Gephi: an open source software for exploring and manipulating networks. ICWSM 8:361–362
Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Complex Syst 1695(5):1–9
Apache hadoop project. http://hadoop.apache.org
Sakr S, Liu A, Fayoumi AG (2013) The family of mapreduce and large-scale data processing systems. ACM Comput Surv 46(1):11
Lee K-H, Lee Y-J, Choi H, Chung YD, Moon B (2012) Parallel data processing with mapreduce: a survey. AcM sIGMoD Rec 40(4):11–20
Chen Y, Kreulen J, Campbell M, Abrams C (2011) Analytics ecosystem transformation: a force for business model innovation. In: 2011 Annual SRII global conference, pp 11–20
Venner J, Wadkar S, Siddalingaiah M (2014) Pro apache Hadoop. ISBN: 9781430248637
Apache hadoop project. http://hadoop.apache.org/docs/r2.5.2/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
Hdfs high availability using the quorum journal manager. https://hadoop.apache.org/docs/r2.7.1/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R, Graves T, Lowe Jason, Shah Hitesh, Seth Siddharth et al (2013) Apache hadoop yarn: Yet another resource negotiator. In: Proceedings of the 4th annual symposium on cloud computing, pp 5:1–16
HDFS Erasure Coding. http://hadoop.apache.org/docs/r3.0.1/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
Apache Hadoop 3.0.1. http://hadoop.apache.org/docs/r3.0.1/
Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I (2010) Spark: cluster computing with working sets. HotCloud 10:10–10
Marcu O-C, Costan A, Antoniu G, Pérez-Hernández MS (2016) Spark versus flink: understanding performance in big data analytics frameworks. In: Cluster computing (CLUSTER), 2016 IEEE international conference on, pp 433–442
Kubernetes concepts. https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
Rensin DK (2015) Kubernetes-scheduling the future at cloud scale
Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Zhang N, Antony S, Liu H, Murthy R (2010) Hive-a petabyte scale data warehouse using hadoop. In: 2010 IEEE 26th international conference on data engineering (ICDE 2010), pp 996–1005
Impala project. http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-impala.html
Armbrust M, Xin RS, Lian C, Huai Y, Liu D, Bradley JK, Meng X, Kaftan T, Franklin MJ, Ghodsi A, et al (2015) Spark SQL: relational data processing in spark. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data, pp 1383–1394
Traverso M (2013) Presto: interacting with petabytes of data at facebook. Retrieved February 4:2014
Hausenblas M, Nadeau J (2013) Apache drill: interactive ad-hoc analysis at scale. Big Data 1(2):100–104
Apache kylin. http://kylin.apache.org/docs
Ho L-Y, Li T-H, Wu J-J, Liu P (2013) Kylin: an efficient and scalable graph data processing system. In: Big data, 2013 IEEE international conference on, pp 193–198
Lamb A, Fuller M, Varadarajan R, Tran N, Vandiver B, Doshi L, Bear C (2012) The vertica analytic database: C-store 7 years later. Proc VLDB Endow 5(12):1790–1801
Chattopadhyay B, Lin L, Liu W, Mittal S, Aragonda P, Lychagina V, Kwon Y, Wong M (2011) Tenzing a SQL implementation on the mapreduce framework
Floratou A, Minhas UF, Özcan F (2014) Sql-on-hadoop: full circle back to shared-nothing database architectures. Proc VLDB Endow 7(12):1295–1306
Nasir MAU (2016) Fault tolerance for stream processing engines. arXiv preprint arXiv:1605.00928
Apache storm. http://storm.apache.org/
Apache storm. http://storm.apache.org/releases/current/Concepts.html
van der Veen JS, van der Waaij B, Lazovik E, Wijbrandi W, Meijer RJ (2015) Dynamically scaling apache storm for the analysis of streaming data. In: Big data computing service and applications (BigDataService), 2015 IEEE first international conference on, pp 154–161
Toshniwal A, Taneja S, Shukla A, Ramasamy K, Patel JM, Kulkarni S, Jackson J, Gade K, Fu M, Donham J et al (2014) Storm@ twitter. In: Proceedings of the 2014 ACM SIGMOD international conference on management of data, pp 147–156
Apache strom 1.2.1. http://storm.apache.org/releases/current/Fault-tolerance.html
Storm 1.2.0. http://storm.apache.org/2018/02/15/storm120-released.html
Samza documentation. https://samza.apache.org/learn/documentation/0.14/comparisons/spark-streaming.html
Bockermann C (2014) A survey of the stream processing landscape. Lehrstuhl fork unstliche Intelligenz Technische Universit. at Dortmund
Neumeyer L, Robbins B, Nair A, Kesari A (2010) S4: distributed stream computing platform. In: Data mining workshops (ICDMW), 2010 IEEE international conference on, pp 170–177
Zaharia M, Das T, Li H, Shenker S, Stoica I (2012) Discretized streams: an efficient and fault-tolerant model for stream processing on large clusters. HotCloud 12:10–10
Zaharia M, Das T, Li H, Hunter T, Shenker S, Stoica I (2013) Discretized streams: fault-tolerant streaming computation at scale. In: Proceedings of the twenty-fourth ACM symposium on operating systems principles, pp 423–438
Spark streaming programming guide. https://spark.apache.org/docs/2.2.0/streaming-programming -guide.html#discretized-streams-dstreams
Improved fault-tolerance and zero data loss in apache spark streaming. https://databricks.com/blog/2015/01/15/improved-driver-fault-tolerance-and-zero-data-loss-in-spark-streaming.html
Apache spark 2.3. https://spark.apache.org/releases/spark-release-2-3-0.html
Chandy KM, Lamport L (1985) Distributed snapshots: determining global states of distributed systems. ACM Trans Comput Syst 3(1):63–75
Apache spark 2.3. https://databricks.com/blog/2018/02/28/introducing-apache-spark-2-3.html
Alexandrov A, Bergmann R, Ewen S, Freytag J-C, Hueske F, Heise A, Kao O, Leich M, Leser U, Markl V (2014) The stratosphere platform for big data analytics. VLDB J 23(6):939–964
Apache flink 1.4. https://ci.apache.org/projects/flink/flink-docs-release-1.4/concepts/runtime.html
Flink checkpointing. https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/stream/checkpointing.html
Exactly-once processing in samza. https://cwiki.apache.org/confluence/display/SAMZA/SEP-10+Exactly-once+Processing+in+Samza
De Morales GF, Bifet A (2015) Samoa: scalable advanced massive online analysis. J Mach Learn Res 16(1):149–153
Samoa project. https://samoa.incubator.apache.org/documentation/SAMOA-Topology.html
Apache samoa documentation. https://samoa.incubator.apache.org/documentation/Home.html
Akidau T, Balikov A, Bekiroğlu K, Chernyak S, Haberman J, Lax R, McVeety S, Mills D, Nordstrom P, Whittle S (2013) Millwheel: fault-tolerant stream processing at internet scale. Proc VLDB Endow 6(11):1033–1044
Kulkarni S, Bhagat N, Fu M, Kedigehalli V, Kellogg C, Mittal S, Patel JM, Ramasamy K, Taneja S (2015) Twitter heron: stream processing at scale. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data, pp 239–250
Abadi D, Carney D, Cetintemel U, Cherniack M, Convey C, Erwin C, Galvez E, Hatoun M, Maskey A, Rasin A et al (2003) Aurora: a data stream management system. In: Proceedings of the 2003 ACM SIGMOD international conference on management of data, pp 666–666
Heron project. https://twitter.github.io/heron/docs/concepts/architecture/#metrics-manager
Structured streaming programming guide. https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
Flink streaming. https://ci.apache.org/projects/flink/flink-docs-master/dev/datastream_api.html
Fu M, Agrawal A, Floratou A, Graham B, Jorgensen A, Li M, Lu N, Ramasamy K, Rao S, Wang C (2017) Twitter heron: towards extensible streaming engines. In: Data engineering (ICDE), 2017 IEEE 33rd international conference on, pp 1165–1172
Amazon kinesis data streams. https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
Azure stream analytics. https://docs.microsoft.com/en-us/azure/stream-analytics/ stream-analytics-introduction#how-does-stream-analytics-work
Ibm streaming analytics. https://www.ibm.com/cloud/streaming-analytics
Samza-storm. https://samza.apache.org/learn/documentation/0.7.0/comparisons/storm.html
Apache storm 2.0. http://storm.apache.org/releases/2.0.0-SNAPSHOT/index.html
Shukla A, Chaturvedi S, Simmhan Y (2017) Riotbench: a real-time iot benchmark for distributed stream processing platforms. arXiv preprint arXiv:1701.08530
Dreissig F, Pollner N (2017) A data center infrastructure monitoring platform based on storm and trident. Datenbanksysteme für Business, Technologie und Web (BTW 2017)-Workshopband
Saha B, Shah H, Seth S, Vijayaraghavan G, Murthy A, Curino C (2015) Apache tez: a unifying framework for modeling and building data processing applications. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data, pp 1357–1369
Tpc-h is a decision support benchmark. http://www.tpc.org/
Hortonworks data platform-apache hive performance tuning. https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_hive-performance-tuning/bk_hive-performance-tuning.pdf
Aws-containers. https://aws.amazon.com/what-are-containers/
Apache mesos. http://mesos.apache.org/documentation/latest/
Sebastio S, Ghosh R, Mukherjee T (2018) An availability analysis approach for deployment configurations of containers. IEEE Trans Serv Comput
Medel V, Rana O, Bañares JÁ, Arronategui Unai (2016) Modelling performance and resource management in kubernetes. In: Utility and cloud computing (UCC), 2016 IEEE/ACM 9th international conference on, pp 257–262
Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD, Katz RH, Shenker S, Stoica I (2011) Mesos: a platform for fine-grained resource sharing in the data center. In: NSDI, vol 11, pp 295–308
Amazon web services. https://aws.amazon.com/docker/
Kreps J, Narkhede N, Rao J et al (2011) Kafka: a distributed messaging system for log processing. In: Proceedings of the NetDB, pp 1–7
Rabbitmq. https://www.rabbitmq.com/
Activemq. http://activemq.apache.org/
AmazonmQ. https://aws.amazon.com/amazon-mq/
Lampesberger H (2016) Technologies for web and cloud service interaction: a survey. Serv Oriented Comput Appl 10(2):71–110
Dobbelaere P, Esmaili KS (2017) Kafka versus RabbitMQ. arXiv preprint arXiv:1709.00333
Sangat P, Indrawan-Santiago M, Taniar D (2018) Sensor data management in the cloud: data storage, data ingestion, and data retrieval. Concurr Comput: Pract Exp 30(1)
Hoffman S (2013) Apache flume: distributed log collection for hadoop. Packt Publishing Ltd
Ting K, Cecho JJ (2013) Apache Sqoop Cookbook. O’Reilly Media, Inc
Rabkin A, Katz RH (2010) Chukwa: a system for reliable large-scale log collection. LISA 10:1–15
Apach sqoop-overview. https://blogs.apache.org/sqoop/entry/apache_sqoop_overview
Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein JM (2010) Graphlab: a new framework for parallel machine learning. arxiv preprint. arXiv preprint arXiv:1006.4990
Aver C (2011) Giraph: large-scale graph processing infrastructure on hadoop. In: Proceedings of the Hadoop summit. Santa Clara 11(3), 5–9
Gonzalez JE, Low Y, Haijie G, Bickson D, Guestrin C (2012) Powergraph: distributed graph-parallel computation on natural graphs. OSDI 12(1):2–2
Salihoglu S, Widom J (2013) Gps: a graph processing system. In: Proceedings of the 25th international conference on scientific and statistical database management 22, pp 1–12
Gonzalez JE, Xin RS, Dave A, Crankshaw D, Franklin MJ, Stoica I (2014) Graphx: graph processing in a distributed dataflow framework. OSDI 14:599–613
Xin RS, Crankshaw D, Dave A, Gonzalez JE, Franklin MJ, Stoica I (2014) Graphx: unifying data-parallel and graph-parallel analytics. arXiv preprint arXiv:1402.2394
Graphx programming guide. https://spark.apache.org/docs/latest/graphx-programming-guide.html
Junghanns M, Petermann A, Gómez K, Rahm E (2015) Gradoop: scalable graph data management and analytics with hadoop. arXiv preprint arXiv:1506.00548
Hunt P, Konar M, Junqueira FP, Reed B (2010) Zookeeper: Wait-free coordination for internet-scale systems. In: USENIX annual technical conference 8(9)
Myriad home. https://cwiki.apache.org/confluence/display/MYRIAD/Myriad+Home
Apache avro. https://avro.apache.org/docs/current/
Hu W, Qu Y (2008) Falcon-AO: a practical ontology matching system. Web Semant: Sci Serv Agents World Wide Web 6(3):237–239
Apache nifi project. https://nifi.apache.org/
Islam M, Huang AK, Battisha M, Chiang M, Srinivasan S, Peters C, Neumann A, Abdelnur A (2012) Oozie: towards a scalable workflow management system for hadoop. In: Proceedings of the 1st ACM SIGMOD workshop on scalable workflow execution engines and technologies 4:1–4:10
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rao, T.R., Mitra, P., Bhatt, R. et al. The big data system, components, tools, and technologies: a survey. Knowl Inf Syst 60, 1165–1245 (2019). https://doi.org/10.1007/s10115-018-1248-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10115-018-1248-0