Skip to main content
Log in

Flow Regime Algorithm (FRA): a physics-based meta-heuristics algorithm

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

In this research study, a physics-based optimization algorithm, namely Flow Regime Algorithm (FRA) is proposed. The main sources of inspiration are classical fluid mechanics and flow regimes. The flow regime usually is being divided into two categories which are laminar and turbulent flows. Reynolds number is the parameter which defines that the flow regime is laminar or turbulent. In this research study, a similar number to Reynolds has been defined which indicates the search type (global or local) of the algorithm and is called search type factor. For the purpose of developing the local and global searches equations, the concept of boundary layer in fluid mechanics has been used. The performance of the proposed algorithm has been evaluated using 26 benchmark functions and has been compared with seven popular and well-known algorithms which are simulated annealing, particle swarm optimization, firefly algorithm, cuckoo search, flower pollination algorithm, krill herd and monarch butterfly. Finally, the heat wheel optimization problem and horizontal axis marine current turbine (tidal turbine) problem, which are real-case engineering problems, have been solved using FRA. The results indicated that FRA can be a great candidate in solving complex engineering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\( D_{\text{h}} \) :

Hydraulic diameter (m)

\( G \) :

Mass flux (kg/s/m2)

\( L \) :

Characteristics length (m)

\( Levy \) :

Generated number using Levy distribution

\( {\text{Maxit}} \) :

Maximum number of iterations

\( {\text{NTU}} \) :

Number of transfer units

\( Rand \) :

Generated number using Gaussian distribution

\( Re \) :

Reynolds number

\( {\text{STF}} \) :

Search type factor

\( V \) :

Velocity (m/s)

\( g \) :

Global best solution

\( h \) :

Channel height (m)

\( \beta \) :

Specific area (m2/m3)

\( \gamma \) :

Scaling factor

\( \delta \) :

Matrix thickness (m)

\( \delta_{\text{L}} \) :

Laminar boundary layer thickness

\( \delta_{\text{T}} \) :

Turbulent boundary layer thickness

\( \varepsilon \) :

Efficiency of heat wheel

\( \mu \) :

Viscosity (Pa s)

\( \rho \) :

Density (kg/m3)

σ :

Porosity

References

  1. Ahilan C, Dhas JER, Somasundaram K et al (2015) Performance assessment of heat exchanger using intelligent decision making tools. Appl Soft Comput 26:474–482

    Article  Google Scholar 

  2. Arora R, Kaushik SC, Kumar R et al (2016) Soft computing based multi-objective optimization of Brayton cycle power plant with isothermal heat addition using evolutionary algorithm and decision making. Appl Soft Comput 46:267–283

    Article  Google Scholar 

  3. Bahaj AS, Molland AF, Chaplin JR et al (2007) Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and towing tank. Renew Energy 32:407–426

    Article  Google Scholar 

  4. Batten WMJ, Bahaj AS, Molland AF et al (2006) Hydrodynamics of marine current turbines. Renew Energy 31:249–256

    Article  Google Scholar 

  5. Benyoucef AS, Chounder A, Kara K et al (2015) Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions. Appl Soft Comput 32:38–48

    Article  Google Scholar 

  6. Birbil SI, Fang SC (2003) An electromagnetism-like mechanism for global optimization. J Glob Optim 25:263–282

    Article  MathSciNet  MATH  Google Scholar 

  7. Braun MA, Seijo S, Echanobe J et al (2016) A neuro-genetic approach for modeling and optimizing a complex cogeneration process. Appl Soft Comput 48:30–43

    Article  Google Scholar 

  8. Chuang CC, Jiang JA (2007) Integrated radiation optimization: inspired by the gravitational radiation in the curvature of space–time. In: IEEE Congress on evolutionary computation, pp 3157–3164

  9. De Paz JF, Tapia DI, Alonso RS et al (2013) Mitigation of the ground reflection effect in real-time locating systems based on wireless sensor networks by using artificial neural networks. Knowl Inf Syst 34:193–217

    Article  Google Scholar 

  10. El Moiz Dahi ZA, Mezioud C, Draa A (2016) On the efficiency of the binary flower pollination algorithm: application on the antenna positioning problem. Appl Soft Comput 47:395–414

    Article  Google Scholar 

  11. Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37:106–111

    Article  Google Scholar 

  12. Eskandar H, Sadollah A, Bahreininejad A et al (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166

    Article  Google Scholar 

  13. Formato RA (2007) Central force optimization: a new metaheuristic with applications in applied electromagnetics. Progr Electromagn Res 77:425–491

    Article  Google Scholar 

  14. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17:4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  15. Geem ZW, Kim JH (2001) A new heuristic optimization algorithm: harmony search. Simulation 76:60–68

    Article  Google Scholar 

  16. Hashemi Y, Shayeghi H, Moradzadeh M (2017) Design of dual-dimensional controller based on multi-objective gravitational search optimization algorithm for amelioration of impact of oscillation in power generated by large-scale wind farms. Appl Soft Comput 53:236–261

    Article  Google Scholar 

  17. Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184

    Article  MathSciNet  Google Scholar 

  18. Hieu TT (2011) A water flow algorithm for optimization problems. Ph.D. thesis, National University of Singapore

  19. Hsiao YT, Chuang CL, Jiang JA et al (2005) A novel optimization algorithm: space gravitational optimization. In: IEEE international conference on systems, man and cybernetics, pp 2323–2328

  20. Javidy B, Hatamlou A, Mirjalili S (2015) Ions motion algorithm for solving optimization problems. Appl Soft Comput 32:72–79

    Article  Google Scholar 

  21. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213:267–289

    Article  MATH  Google Scholar 

  22. Kaveh A, Ghazaan MI, Bakhshpoori T (2013) An improved ray optimization algorithm for design of truss structures. Period Polytech Civ Eng 57:97–112

    Article  Google Scholar 

  23. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks, vol 4, pp 1942–1948

  24. Kirkpatrick S, Gelatt Jr CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  MathSciNet  MATH  Google Scholar 

  25. Kripka M, Kripka RML (2008) “Big crunch” optimization method. In: International conference on engineering optimization

  26. Li X, Zhang J, Yin M (2014) Animal migration optimization: an optimization algorithm inspired by animal migration behavior. Neural Comput Appl 24:1867–1877

    Article  Google Scholar 

  27. Mirjalili S (2015) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27:1053–1073

    Article  Google Scholar 

  28. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249

    Article  Google Scholar 

  29. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  30. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  31. Mortazavi A, Togan V (2017) Sizing and layout design of truss structures under dynamic and static constraints with an integrated particle swarm optimization algorithm. Appl Soft Comput 51:239–252

    Article  Google Scholar 

  32. Rabanal P, Rodriguez I and Rubio F (2008) Solving dynamic TSP by using river formation dynamics. In: Fourth international conference on natural computation. IEEE computer society, pp 246–250

  33. Rao SS (2009) Engineering optimization theory and practice. Wiley, New Jersey, pp 1–6

    Book  Google Scholar 

  34. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitation search algorithm. Inf Sci 179:2232–2248

    Article  MATH  Google Scholar 

  35. Sacco WF, de Oliveira CRE (2005) A new stochastic optimization algorithm based on a particle collision meta heuristic. In: 6th World Congresses of structural and multidisciplinary optimization

  36. Shah Hosseini H (2011) Otsu’s criterion-based multilevel thresholding by a nature-inspired metaheuristic called galaxy-based search algorithm. In: Third World Congress on nature and biologically inspired computing (NaBIC), pp 383–388

  37. Shah RK, Shekulic DP (2003) Fundamentals of heat exchanger design. Wiley, NewYork, pp 308–326

    Book  Google Scholar 

  38. Shah-Hosseini H (2009) The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. Int J Bio-Inspired Comput 1:71–79

    Article  Google Scholar 

  39. Shames IH (2003) Mechanics of fluids. McGraw Hill, New York, pp 637–649

    Google Scholar 

  40. Tahani M, Babayan N, Mehrnia S et al (2016) A novel heuristic method for optimization of straight blade vertical axis wind turbine. Energy Convers Manag 127:461–476

    Article  Google Scholar 

  41. Tahani M, Babayan N (2017) Optimum section selection procedure for horizontal axis tidal stream turbines. Neural Comput Appl. https://doi.org/10.1007/s00521-017-3079-4

    Google Scholar 

  42. Tahani M, Babayan N, Pouyaei A (2015) Optimization of PV/Wind/Battery stand-alone system, using hybrid FPA/SA algorithm and CFD simulation, case study: Tehran. Energy Convers Manag 106:644–659

    Article  Google Scholar 

  43. Tahani M, Babayan N, Astaraei FR et al (2015) Multi objective optimization of horizontal axis tidal current turbines, using Meta heuristics algorithms. Energy Convers Manag 103:487–498

    Article  Google Scholar 

  44. Tayarani MH, Akbarzadeh MR (2008) Magnetic optimization algorithms a new synthesis. In: IEEE Congress on evolutionary computation, pp 2659–2664

  45. Uymaz SA, Tezel G, Yel E (2015) Artificial algae algorithm (AAA) for nonlinear global optimization. Appl Soft Comput 31:153–171

    Article  Google Scholar 

  46. Wang GG, Deb S, Cui Z (2015) Monarch butterfly optimization. Neural Comput Appl. https://doi.org/10.1007/s00521-015-1923-y

    Google Scholar 

  47. Xie L, Zeng J and Cui Z (2009) General framework of artificial physics optimization algorithm. In: World Congress on nature and biologically inspired computing, pp 1321–1326

  48. Yang XS (2010) Firefly algorithm, stochastic test functions and design optimisation. Int J Bio-Inspired Comput 2:78–84

    Article  Google Scholar 

  49. Yang X.S (2012) Flower pollination algorithm for global optimization. In: Unconventional computation and natural computation, pp 240–249

  50. Yang XS, Deb S (2009) Cuckoo search via Levy flights. In: Proceedings of World Congress on nature and biologically inspired computing (NaBIC), pp 210–214

  51. Yazdani M, Jolai F (2016) Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J Comput Des Eng 3:24–36

    Google Scholar 

  52. Yilmaz S, Kucuksille EU (2015) A new modification approach on bat algorithm for solving optimization problems. Appl Soft Comput 28:259–275

    Article  Google Scholar 

  53. Yu JJQ, Li VOK (2015) A social spider algorithm for global optimization. Appl Soft Comput 30:614–627

    Article  Google Scholar 

  54. Zarand G, Pazmandi F, Pal KF et al (2002) Using Hysteresis for Optimization. Phys Rev Lett 89:150201-1–150201-4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narek Babayan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahani, M., Babayan, N. Flow Regime Algorithm (FRA): a physics-based meta-heuristics algorithm. Knowl Inf Syst 60, 1001–1038 (2019). https://doi.org/10.1007/s10115-018-1253-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-018-1253-3

Keywords

Navigation