Abstract
The ever-growing usage of knowledge graphs (KGs) positions named entity disambiguation (NED) at the heart of designing accurate KG-driven systems such as query answering systems (QAS). According to the current research, most studies dealing with NED on KGs involve long texts, which is not the case of short text fragments, identified by their limited contexts. The accuracy of QASs strongly depends on the management of such short text. This limitation motivates this paper, which studies the NED problem on KGs, involving only short texts. First, we propose a NED approach including the following steps: (i) context expansion using WordNet to measure its similarity to the resource context. (ii) Exploiting coherence between entities in queries that contain more than one entity, such as “Is Michelle Obama the wife of Barack Obama?”. (iii) Taking into account the relations between words to calculate their similarity with the properties of a resource. (iv) the use of syntactic features. The NED solution approach is compared to state-of-the-art approaches using five datasets. The experimental results show that our approach outperforms these systems by 27% in the F-measure. A system called Welink, implementing our proposal, is available on GitHub, and it is also accessible via a REST API.








Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Notes
PREFIX dbr: <http://dbpedia.org/resource/>.
This triple is a part of DBpedia’s Knowledge Graph.
References
Al-Moslmi T, Ocaña MG, Opdahl AL, Veres C (2020) Named entity extraction for knowledge graphs: a literature overview. IEEE Access 8:32862–32881. https://doi.org/10.1109/ACCESS.2020.2973928
Alokaili A, Menai MEB (2020) SVM ensembles for named entity disambiguation. Computing 102(4):1051–1076. https://doi.org/10.1007/s00607-019-00748-x
Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z (2007) Dbpedia: a nucleus for a web of open data. In: The semantic web. Springer, pp 722–735. https://doi.org/10.1007/978-3-540-76298-0_52
Azad HK, Deepak A (2019) A new approach for query expansion using Wikipedia and wordnet. Inf Sci 492:147–163. https://doi.org/10.1016/j.ins.2019.04.019
Bellomarini L, Gottlob G, Pieris A, Sallinger E (2018) Swift logic for big data and knowledge graphs. In: International conference on current trends in theory and practice of informatics. Springer, pp 3–16. https://doi.org/10.1007/978-3-319-73117-9_1
Bennett PN, Gabrilovich E, Kamps J, Karlgren J (2014) Report on the sixth workshop on exploiting semantic annotations in information retrieval (esair’13). SIGIR Forum 48(1):13–20. https://doi.org/10.1145/2641383.2641387
Bentounsi I, Boufaïda Z (2015) Disambiguation of semantic types in complex noun phrases for extracting candidate terms. Int J Metadata, Semant Ontol 10(2):112–122. https://doi.org/10.1504/IJMSO.2015.070830
Berry DM (2007) Ambiguity in natural language requirements documents. In: Monterey workshop. Springer, pp 1–7. https://doi.org/10.1007/978-3-540-89778-1_1
Bollacker KD, Evans C, Paritosh P, Sturge T, Taylor J (2008) Freebase: a collaboratively created graph database for structuring human knowledge. In: ACM SIGMOD, pp 1247–1250. https://doi.org/10.1145/1376616.1376746
Bouarroudj W, Boufaida Z (2018) A candidate generation algorithm for named entities disambiguation using dbpedia. In: World conference on information systems and technologies. Springer, pp 712–721. https://doi.org/10.1007/978-3-319-77703-0_71
Bouarroudj W, Boufaida Z, Bellatreche L (2019) Welink: a named entity disambiguation approach for a qas over knowledge bases. In: International conference on flexible query answering systems. Springer, pp 85–97. https://doi.org/10.1007/978-3-030-27629-4_11
Burel G, Saif H, Alani H (2017) Semantic wide and deep learning for detecting crisis-information categories on social media. In: International semantic web conference. Springer, pp 138–155. https://doi.org/10.1007/978-3-319-68288-4_9
Dai W, Vyatkin V, Christensen JH, Dubinin VN (2015) Bridging service-oriented architecture and IEC 61499 for flexibility and interoperability. IEEE Trans Ind Inf 11(3):771–781. https://doi.org/10.1109/TII.2015.2423495
Diefenbach D, Giménez-García J, Both A, Singh K, Maret P (2020) Qanswer kg: Designing a portable question answering system over RDF data. In: European semantic web conference. Springer, pp 429–445. https://doi.org/10.1007/978-3-030-49461-2_25
Diefenbach D, Lopez V, Singh K, Maret P (2018) Core techniques of question answering systems over knowledge bases: a survey. Knowl Inf Syst 55(3):529–569. https://doi.org/10.1007/s10115-017-1100-y
Dredze M, McNamee P, Rao D, Gerber A, Finin T (2010) Entity disambiguation for knowledge base population. In: Proceedings of the 23rd international conference on computational linguistics. Association for Computational Linguistics, pp 277–285
Dubey M, Banerjee D, Chaudhuri D, Lehmann J (2018) Earl: joint entity and relation linking for question answering over knowledge graphs. In: International semantic web conference. Springer, pp 108–126. https://doi.org/10.1007/978-3-030-00671-6_7
Dubey M, Dasgupta S, Sharma A, Höffner K, Lehmann J (2016) Asknow: a framework for natural language query formalization in Sparql. In: European semantic web conference. Springer, pp 300–316. https://doi.org/10.1007/978-3-319-34129-3_19
Fang Z, Cao Y, Li Q, Zhang D, Zhang Z, Liu Y (2019) Joint entity linking with deep reinforcement learning. In: The world wide web conference, pp 438–447. https://doi.org/10.1145/3308558.3313517
Ferragina P, Scaiella U (2011) Fast and accurate annotation of short texts with Wikipedia pages. IEEE Softw 29(1):70–75. https://doi.org/10.1109/MS.2011.122
Green Jr BF, Wolf AK, Chomsky C, Laughery K (1961) Baseball: an automatic question-answerer. In: Papers presented at the May 9–11, 1961, western joint IRE-AIEE-ACM computer conference, pp 219–224. https://doi.org/10.1145/1460690.1460714
Guo S, Chang MW, Kiciman E (2013) To link or not to link? A study on end-to-end tweet entity linking. In: Proceedings of the 2013 conference of the North American chapter of the association for computational linguistics: human language technologies, pp 1020–1030
Gutierrez C, Sequeda JF (2021) Knowledge graphs. Commun ACM 64(3):96–104. https://doi.org/10.1145/3418294
Hachey B, Radford W, Nothman J, Honnibal M, Curran JR (2013) Evaluating entity linking with Wikipedia. Artif Intell 194:130–150. https://doi.org/10.1016/j.artint.2012.04.005
Harris S, Seaborne A (2013) SPARQL 1.1 overview. https://www.w3.org/TR/sparql11-overview/
Hasibi F, Balog K, Bratsberg SE (2017) Entity linking in queries: efficiency vs. effectiveness. In: European conference on information retrieval. Springer, pp 40–53. https://doi.org/10.1007/978-3-319-56608-5_4
He Q (2021) People of ACM. https://www.acm.org/articles/people-of-acm/2021/qi-he?fbclid=IwAR0wMvkvDL5k_iuShKqGluAG5z9_t5dsw-bnnwTMVf2bE03KN4sBHuwXBwc
He Q, Yang J, Shi B (2020) Constructing knowledge graph for social networks in A deep and holistic way. In: Companion of the web conference, pp 307–308. https://doi.org/10.1145/3366424.3383112
Hoffart J, Yosef MA, Bordino I, Fürstenau H, Pinkal M, Spaniol M, Taneva B, Thater S, Weikum G (2011) Robust disambiguation of named entities in text. In: Proceedings of the 2011 conference on empirical methods in natural language processing, pp 782–792
Höffner K, Walter S, Marx E, Usbeck R, Lehmann J, Ngonga Ngomo AC (2017) Survey on challenges of question answering in the semantic web. Semant Web 8(6):895–920. https://doi.org/10.3233/SW-160247
Hogan A, Blomqvist E, Cochez M, d’Amato C, de Melo G, Gutierrez C, Gayo JEL, Kirrane S, Neumaier S, Polleres A, Navigli R, Ngomo ACN, Rashid SM, Rula A, Schmelzeisen L, Sequeda J, Staab S, Zimmermann A (2021) Knowledge graphs. Synth Lect Data Semantics Knowledge 12(2):1–257
Hu X, Duan J, Dang D (2021) Natural language question answering over knowledge graph: the marriage of sparql query and keyword search. Knowl Inf Syst. https://doi.org/10.1007/s10115-020-01534-4
Huang X, Zhang J, Li D, Li P (2019) Knowledge graph embedding based question answering. In: Proceedings of the 12th ACM international conference on web search and data mining, pp 105–113. https://doi.org/10.1145/3289600.3290956
Klie JC, de Castilho RE, Gurevych I (2020) From zero to hero: human-in-the-loop entity linking in low resource domains. In: Proceedings of the 58th annual meeting of the association for computational linguistics, pp 6982–6993. https://doi.org/10.18653/v1/2020.acl-main.624
Kolitsas N, Ganea OE, Hofmann T (2018) End-to-end neural entity linking. ArXiv preprint arXiv:1808.07699. https://doi.org/10.18653/v1/K18-1050
Ling X, Singh S, Weld DS (2015) Design challenges for entity linking. Trans Assoc Comput Linguist 3:315–328. https://doi.org/10.1162/tacl_a_00141
Logeswaran L, Chang MW, Lee K, Toutanova K, Devlin J, Lee H (2019) Zero-shot entity linking by reading entity descriptions. ArXiv preprint arXiv:1906.07348
Manning CD, Raghavan P, Schütze H (2008) Scoring, term weighting and the vector space model. Introd Inf Retr 100:2–4. https://doi.org/10.1017/CBO9780511809071.007
Marginean A (2017) Question answering over biomedical linked data with grammatical framework. Semant Web 8(4):565–580. https://doi.org/10.3233/SW-160223
Mendes PN, Jakob M, García-Silva A, Bizer C (2011) Dbpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th international conference on semantic systems. ACM, pp 1–8. https://doi.org/10.1145/2063518.2063519
Mezni H, Benslimane D, Bellatreche L (2021) Context-aware service recommendation based on knowledge graph embedding. IEEE Trans Knowl Data Eng. https://doi.org/10.1109/TKDE.2021.3059506
Michel F, Gandon F, Ah-Kane V, Bobasheva A, Cabrio E, Corby O, Gazzotti R, Giboin A, Marro S, Mayer T, et al. (2020) Covid-on-the-web: knowledge graph and services to advance covid-19 research. In: International semantic web conference. Springer, pp 294–310. https://doi.org/10.1007/978-3-030-62466-8_19
Miller GA (1995) Wordnet: a lexical database for English. Commun ACM 38(11):39–41. https://doi.org/10.1145/219717.219748
Mishra A, Jain SK (2016) A survey on question answering systems with classification. J King Saud Univer-Comput Inf Sci 28(3):345–361. https://doi.org/10.1016/j.jksuci.2014.10.007
Moro A, Raganato A, Navigli R (2014) Entity linking meets word sense disambiguation: a unified approach. Trans Assoc Comput Linguist 2:231–244. https://doi.org/10.1162/tacl_a_00179
Oliveira IL, Fileto R, Speck R, Garcia LP, Moussallem D, Lehmann J (2021) Towards holistic entity linking: survey and directions. Inf Syst 95:101624. https://doi.org/10.1016/j.is.2020.101624
Parravicini A, Patra R, Bartolini DB, Santambrogio MD (2019) Fast and accurate entity linking via graph embedding. In: Proceedings of the 2nd joint international workshop on graph data management experiences and systems (GRADES) and network data analytics (NDA), pp 1–9. https://doi.org/10.1145/3327964.3328499
Pohl K, Böckle G, van Der Linden FJ (2005) Software product line engineering: foundations, principles and techniques. Springer
Rama-Maneiro E, Vidal JC, Lama M (2020) Collective disambiguation in entity linking based on topic coherence in semantic graphs. Knowl-Based Syst. https://doi.org/10.1016/j.knosys.2020.105967
Sakor A, Mulang IO, Singh K, Shekarpour S, Vidal ME, Lehmann J, Auer S (2019) Old is gold: linguistic driven approach for entity and relation linking of short text. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, vol 1, pp 2336–2346. https://doi.org/10.18653/v1/N19-1243
Sevgili Ö, Panchenko A, Biemann C (2019) Improving neural entity disambiguation with graph embeddings. In: Proceedings of the 57th annual meeting of the association for computational linguistics: student research workshop, pp 315–322. https://doi.org/10.18653/v1/P19-2044
Sevgili O, Shelmanov A, Arkhipov M, Panchenko A, Biemann C (2020) Neural entity linking: a survey of models based on deep learning. ArXiv preprint arXiv:2006.00575
Shekarpour S, Marx E, Ngonga Ngomo AC, Auer S (2014) Sina: semantic interpretation of user queries for question answering on interlinked data. Web Semant: Sci, Serv Agents World Wide Web. https://doi.org/10.1016/j.websem.2014.06.002
Shen W, Wang J, Han J (2015) Entity linking with a knowledge base: issues, techniques, and solutions. IEEE Trans Knowl Data Eng 27(2):443–460. https://doi.org/10.1109/TKDE.2014.2327028
Singh K, Radhakrishna AS, Both A, Shekarpour S, Lytra I, Usbeck R, Vyas A, Khikmatullaev A, Punjani D, Lange C, et al. (2018) Why reinvent the wheel: let’s build question answering systems together. In: Proceedings of the 2018 world wide web conference, pp 1247–1256. https://doi.org/10.1145/3178876.3186023
Singhal A (2012) Introducing the knowledge graph: things, not strings. Off Google Blog 5:16. https://blog.google/products/search/introducingknowledge-graph-things-not
Usbeck R, Gusmita RH, Ngomo AN, Saleem M (2018) 9th challenge on question answering over linked data (QALD-9). In: SemDeep-4 and NLIWOD-4 and ISWC vol 2241, pp 58-64. CEUR-WS.org
Usbeck R, Ngomo ACN, Conrads F, Röder M, Napolitano G (2018) 8th challenge on question answering over linked data (qald-8). Language 7:1
Usbeck R, Ngomo ACN, Haarmann B, Krithara A, Röder M, Napolitano G (2017) 7th open challenge on question answering over linked data (qald-7). In: Semantic web evaluation challenge. Springer, pp 59–69. https://doi.org/10.1007/978-3-319-69146-6_6
Usbeck R, Ngomo ACN, Röder M, Gerber D, Coelho SA, Auer S, Both A (2014) Agdistis-graph-based disambiguation of named entities usinglinked data. In: International semantic web conference. Springer, pp 457–471. https://doi.org/10.1007/978-3-319-11964-9_29
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bouarroudj, W., Boufaida, Z. & Bellatreche, L. Named entity disambiguation in short texts over knowledge graphs. Knowl Inf Syst 64, 325–351 (2022). https://doi.org/10.1007/s10115-021-01642-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10115-021-01642-9