Skip to main content
Log in

Bridging the gap between expressivity and efficiency in stream reasoning: a structural caching approach for IoT streams

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

In today’s data landscape, data streams are well represented. This is mainly due to the rise of data-intensive domains such as the Internet of Things (IoT), Smart Industries, Pervasive Health, and Social Media. To extract meaningful insights from these streams, they should be processed in real time, while solving an integration problem as these streams need to be combined with more static data and their domain knowledge. Ontologies are ideal for modeling this domain knowledge and facilitate the integration of heterogeneous data within data-intensive domains such as the IoT. Expressive reasoning techniques, such as OWL2 DL reasoning, are needed to completely interpret the domain knowledge and for the extraction of meaningful decisions. Expressive reasoning techniques have mainly focused on static data environments, as it tends to become slow with growing datasets. There is thus a mismatch between expressive reasoning and the real-time requirements of data-intensive domains. In this paper, we take a first step towards bridging the gap between expressivity and efficiency while reasoning over high-velocity IoT data streams for the task of event enrichment. We present a structural caching technique that eliminates reoccurring reasoning steps by exploiting the characteristics of most IoT streams, i.e., streams typically produce events that are similar in structure and size. Our caching technique speeds up reasoning time up to thousands of times for fully fledged OWL2 DL reasoners and even tenths and hundreds of times for less expressive OWL2 RL and OWL2 EL reasoners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. https://lov.linkeddata.es/dataset/lov/.

  2. https://www.w3.org/TR/vocab-ssn/.

  3. Note that Reading and Sitting are subclasses of RestingBreathingActivity as defined in the activity hierarchy (see Fig. 6).

  4. https://dyamand.tech/.

  5. The source code can be found on https://github.com/IBCNServices/LOCERS.

  6. jena.apache.org.

  7. Queries of the form: Select ?s WHERE{?s a :someType}.

  8. We used Jena for the evaluation of the queries.

References

  1. Adams T, Dullea J, Clark P, Sripada S, Barrett T (2000) Semantic integration of heterogeneous information sources using a knowledge-based system. In: Proc 5th Int Conf on CS and Informatics (CS &I’2000). Citeseer

  2. Ali MI, Gao F, Mileo A (2015) Citybench: a configurable benchmark to evaluate RSP engines using smart city datasets. In: ISWC, pp 374–389. Springer

  3. Baader F, Calvanese D, McGuinness D, Patel-Schneider P, Nardi D (2003) The description logic handbook: theory, implementation and applications. Cambridge university press

  4. Barbieri DF, Braga D, Ceri S, Della Valle E, Grossniklaus M (2010) Incremental reasoning on streams and rich background knowledge. In: Extended semantic web conference, pp 1–15. Springer

  5. Barbieri DF, Braga D, Ceri S, Valle ED, Grossniklaus M (2010) C-sparql: a continuous query language for rdf data streams. Int J Semant Comput 4(01):3–25

    Article  Google Scholar 

  6. Barnaghi P, Wang W, Henson C, Taylor K (2012) Semantics for the internet of things: early progress and back to the future. Int J Semant Web Inform Syst (IJSWIS) 8:1–21

    Article  Google Scholar 

  7. Bazoobandi HR, Bal H, van Harmelen F, Urbani J (2020) Handling impossible derivations during stream reasoning. In: ESWC, pp 3–19. Springer

  8. Bonte P, Ongenae F (2020) OWL2Streams a benchmark for expressive stream reasoning for dynamic owl2 reasoners. https://github.com/IBCNServices/OWL2Streams

  9. Bonte P, Ongenae F, De Backere F, Schaballie J, Arndt D, Verstichel S, Mannens E, Van de Walle R, De Turck F (2017) The massif platform: a modular and semantic platform for the development of flexible iot services. Knowl Inf Syst 51(1):89–126

    Article  Google Scholar 

  10. Bonte P, Ongenae F, De Turck F (2019) Subset reasoning for event-based systems. IEEE Access 7:107533–107549

    Article  Google Scholar 

  11. Bonte P, Tommasini R, Della Valle E, De Turck F, Ongenae F (2018) Streaming MASSIF: cascading reasoning for efficient processing of IoT data streams. Sensors 18(11):3832

    Article  Google Scholar 

  12. Calbimonte JP, Mora J, Corcho O (2016) Query rewriting in rdf stream processing. In: European semantic web conference, pp 486–502. Springer

  13. Compton M, Barnaghi P, Bermudez L, Garcia-Castro R, Corcho O, Cox S, Graybeal J, Hauswirth M, Henson C, Herzog A et al (2012) The ssn ontology of the w3c semantic sensor network incubator group. Journal of Web Semantics 17:25–32

    Article  Google Scholar 

  14. Della Valle E, Ceri S, Van Harmelen F, Fensel D (2009) It’s a streaming world! reasoning upon rapidly changing information. IEEE Intell Syst 24(6):83–89

    Article  Google Scholar 

  15. Della Valle E, Dell’Aglio D, Margara A (2016) Taming velocity and variety simultaneously in big data with stream reasoning: tutorial. In: DEBS, pp 394–401

  16. Dell’Aglio D, Della Valle E, van Harmelen F, Bernstein A (2017) Stream reasoning: a survey and outlook. Data Science (Preprint), 1–24

  17. Dimou A, Vander Sande M, Colpaert P, Verborgh R, Mannens E, Van de Walle R (2014) Rml: a generic language for integrated rdf mappings of heterogeneous data. In: Ldow

  18. Dodaro C, Eiter T, Ogris P, Schekotihin K (2020) Managing caching strategies for stream reasoning with reinforcement learning. Theory Pract Logic Program 20(5):625–640

    Article  MathSciNet  Google Scholar 

  19. Giustozzi F, Saunier J, Zanni-Merk C (2018) Context modeling for industry 4.0: an ontology-based proposal. Proc Comput Sci 126:675–684

    Article  Google Scholar 

  20. Glimm B, Horrocks I, Motik B, Stoilos G, Wang Z (2014) Hermit: an OWL 2 reasoner. J Autom Reason 53(3):245–269

    Article  Google Scholar 

  21. Glimm B, Kazakov Y, Tran TK (2017) Ontology materialization by abstraction refinement in horn shoif. In: AAAI, pp. 1114–1120

  22. Gruber TR (1995) Toward principles for the design of ontologies used for knowledge sharing? Int J Hum Comput Stud 43(5–6):907–928

    Article  Google Scholar 

  23. Guo F, Solihin Y (2006) An analytical model for cache replacement policy performance. In: Proceedings of the joint international conference on Measurement and modeling of computer systems, pp 228–239

  24. Heyvaert P, De Meester B, Dimou A, Verborgh R (2018) Declarative rules for linked data generation at your fingertips! In: European Semantic Web Conference, pp 213–217. Springer

  25. Horridge M, Bechhofer S (2011) The owl api: a java api for owl ontologies. Semantic web 2(1):11–21

    Article  Google Scholar 

  26. Horrocks I, Kutz O, Sattler U (2006) The even more irresistible SROIQ. Kr 6:57–67

  27. Hustadt U, Motik B, Sattler U (2005) Data complexity of reasoning in very expressive description logics. IJCAI 5:466–471

    Google Scholar 

  28. Isah H, Abughofa T, Mahfuz S, Ajerla D, Zulkernine F, Khan S (2019) A survey of distributed data stream processing frameworks. IEEE Access 7:154300–154316

    Article  Google Scholar 

  29. Jordan H, Subotić P, Zhao D, Scholz B (2019) A specialized b-tree for concurrent datalog evaluation. In: Proceedings of the 24th symposium on principles and practice of parallel programming, pp 327–339

  30. Kazakov Y, Krötzsch M, Simancik F (2012) Elk reasoner: architecture and evaluation. In: ORE

  31. Keskisärkkä R, Blomqvist E, Hartig O (2011) Optimizing rdf stream processing for uncertainty management. In: Further with Knowledge Graphs, pp 118–132. IOS Press

  32. Le-Phuoc D, Dao-Tran M, Xavier Parreira J, Hauswirth M (2011) A native and adaptive approach for unified processing of linked streams and linked data, pp 370–388. Springer Berlin Heidelberg, Berlin, Heidelberg

  33. Nelis J, Verschueren T, Verslype D, Develder C (2012) Dyamand: dynamic, adaptive management of networks and devices. In: 37th Annual IEEE conference on local computer networks, pp 192–195. IEEE

  34. Nenov Y, Piro R, Motik B, Horrocks I, Wu Z, Banerjee J (2015) Rdfox: A highly-scalable rdf store. In: ISWC, pp 3–20. Springer

  35. Pan JZ (2009) Resource description framework. In: Handbook on ontologies, pp 71–90. Springer

  36. Peng Z, Jimenez JL (2020) Exhaled CO2 as COVID-19 infection risk proxy for different indoor environments and activities. medRxiv

  37. Petrolo R, Loscri V, Mitton N (2017) Towards a smart city based on cloud of things, a survey on the smart city vision and paradigms. Trans Emerg Telecommun Technol 28(1):e2931

    Article  Google Scholar 

  38. Shearer R, Motik B, Horrocks I (2008) Hermit: A highly-efficient owl reasoner. OWLED 432:91

  39. Singh G, Bhatia S, Mutharaju R (2020) Owl2bench: a benchmark for owl 2 reasoners. In: International semantic web conference, pp 81–96. Springer

  40. Sirin E, Parsia B, Grau BC, Kalyanpur A, Katz Y (2007) Pellet: a practical OWL-DL reasoner. Web Semantics: science, services and agents on the World Wide Web 5(2):51–53

  41. Steigmiller A, Liebig T, Glimm B (2012) Extended caching, backjumping and merging for expressive description logics. In: IJCAR, pp 514–529. Springer

  42. Stuckenschmidt H, Ceri S, Della Valle E, Van Harmelen F (2010) Towards expressive stream reasoning. In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik

  43. Teymourian K, Paschke A (2016) Semantic enrichment of event stream for semantic situation awareness. In: Semantic Web, pp 185–212. Springer

  44. Thomas E, Pan JZ, Ren Y (2010) TrOWL: tractable OWL 2 reasoning infrastructure. In: Extended Semantic Web Conference, pp 431–435. Springer

  45. Tommasini R, Bonte P, Ongenae F, Della Valle E (2021) Rsp4j: an api for rdf stream processing. In: European Semantic Web Conference, pp 565–581. Springer

  46. Tommasini R, Sedira YA, Dell’Aglio D, Balduini M, Ali MI, Le Phuoc D, Della Valle E, Calbimonte JP (2018) Vocals: vocabulary and catalog of linked streams. In: International semantic web conference, pp 256–272. Springer

  47. Westermann U, Jain R (2007) Toward a common event model for multimedia applications. IEEE Multimedia 14(1):19–29

    Article  Google Scholar 

Download references

Acknowledgements

Pieter Bonte is funded by a postdoctoral fellowship of Fonds Wetenschappelijk Onderzoek Vlaanderen (FWO) (1266521N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Bonte.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonte, P., Turck, F.D. & Ongenae, F. Bridging the gap between expressivity and efficiency in stream reasoning: a structural caching approach for IoT streams. Knowl Inf Syst 64, 1781–1815 (2022). https://doi.org/10.1007/s10115-022-01686-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-022-01686-5

Keywords