Skip to main content
Log in

Iterative sliding window aggregation for generating length-scale-specific fractal features

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

The prevalence of high-resolution geospatial raster data is rapidly increasing, with potentially far-reaching applications in the area of food, energy, and water. The added resolution allows shifting the focus from data science at the level of individual pixels to working with windows of pixels that characterize a region. We propose a sliding-window-based approach that allows extracting derived features on a spectrum of well-defined length scales. The resulting image has the same resolution as the input image, albeit with slightly smaller size, and the fractal dimension measures are consistent with the definition of the conventional global feature. The sliding windows can be large since the dependence of the computational cost on the window size is logarithmic. We demonstrate the success of the approach for geometric examples and for land use data and show that the resulting features can aid in a downstream classification task. Overall, this work fits the broadly recognized need in agricultural data science of transforming raw data into multi-modal representations that capture application-relevant features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Anselin L, McCann M (2009) Opengeoda, open source software for the exploration and visualization of geospatial data. In: Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems. ACM, pp 550–551

  2. Bhatta B (2010) Analysis of urban growth and sprawl from remote sensing data. Springer, Berlin

    Book  Google Scholar 

  3. Cheng Q (1997) Multifractal modeling and lacunarity analysis. Math Geol 29(7):919–932

    Article  Google Scholar 

  4. Deems JS, Fassnacht SR, Elder KJ (2006) Fractal distribution of snow depth from lidar data. J Hydrometeorol 7(2):285–297

    Article  Google Scholar 

  5. Denton AM, Ahsan M, Franzen D, Nowatzki J (2016) Multi-scalar analysis of geospatial agricultural data for sustainability. In: 2016 IEEE international conference on big data (Big Data). IEEE, pp 2139–2146

  6. Dong P (2009) Lacunarity analysis of raster datasets and 1d, 2d, and 3d point patterns. Comput Geosci 35:2100–2110

    Article  Google Scholar 

  7. Florindo JB, Bruno OM (2016) Local fractal dimension and binary patterns in texture recognition. Pattern Recogn Lett 78:22–27

    Article  Google Scholar 

  8. Gadde SG, Anegondi N, Bhanushali D, Chidambara L, Yadav NK, Khurana A, Roy AS (2016) Quantification of vessel density in retinal optical coherence tomography angiography images using local fractal dimension vessel density in octa images. Invest Ophthalmol Vis Sci 57(1):246–252

    Article  Google Scholar 

  9. Glick N (1978) Additive estimators for probabilities of correct classification. Pattern Recogn 10(3):211–222

    Article  MATH  Google Scholar 

  10. Gneiting T, Ševčíková H, Percival DB (2012) Estimators of fractal dimension: assessing the roughness of time series and spatial data. Stat Sci 27:247–277

    Article  MathSciNet  MATH  Google Scholar 

  11. Gupta J, Xie Y, Shekhar S (2020) Towards spatial variability aware deep neural networks (SVANN): a summary of results. arXiv preprint arXiv:2011.08992

  12. Han J, Stefanovic N, Koperski K (1998) Selective materialization: an efficient method for spatial data cube construction. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, Berlin, pp 144–158

  13. Herold M, Couclelis H, Clarke KC (2005) The role of spatial metrics in the analysis and modeling of urban land use change. Comput Environ Urban Syst 29(4):369–399

    Article  Google Scholar 

  14. Irwin EG, Geoghegan J (2001) Theory, data, methods: developing spatially explicit economic models of land use change. Agricult Ecosyst Environ 85(1):7–24

    Article  Google Scholar 

  15. Jia X, Khandelwal A, Mulla DJ, Pardey PG, Kumar V (2019) Bringing automated, remote-sensed, machine learning methods to monitoring crop landscapes at scale. Agric Econ 50:41–50

    Article  Google Scholar 

  16. Karpatne A, Ebert-Uphoff I, Ravela S, Babaie HA, Kumar V (2018) Machine learning for the geosciences: challenges and opportunities. IEEE Trans Knowl Data Eng 31(8):1544–1554

    Article  Google Scholar 

  17. Keller JM, Chen S, Crownover RM (1989) Texture description and segmentation through fractal geometry. Comput Vis Graph Image Process 45(2):150–166

    Article  Google Scholar 

  18. Keller JM, Seo YB (1990) Local fractal geometric features for image segmentation. Int J Imaging Syst Technol 2(4):267–284

    Article  Google Scholar 

  19. Landis J, Zhang M (1998) The second generation of the California urban futures model: Part 1—model logic and theory. Environ Plan B Plan Des 25(5):657–666

    Article  Google Scholar 

  20. Liakos KG, Busato P, Moshou D, Pearson S, Bochtis D (2018) Machine learning in agriculture: a review. Sensors 18(8):2674

    Article  Google Scholar 

  21. Liebovitch LS, Toth T (1989) A fast algorithm to determine fractal dimensions by box counting. Phys Lett A 141(8–9):386–390

    Article  MathSciNet  Google Scholar 

  22. Lins L, Klosowski JT, Scheidegger C (2013) Nanocubes for real-time exploration of spatiotemporal datasets. IEEE Trans Visual Comput Graph 19(12):2456–2465

    Article  Google Scholar 

  23. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693

    Article  MATH  Google Scholar 

  24. Mandelbrot BB (1967) How long is the coast of Britain. Science 156(3775):636–638

    Article  Google Scholar 

  25. Mucherino A, Papajorgji P, Pardalos P (2009) Data mining in agriculture. Springer, New York

    Book  MATH  Google Scholar 

  26. National Agriculture Statistics Service: Cropscape—cropland data layer. https://data.nal.usda.gov/dataset/cropscape-cropland-data-layer Accessed Jan 2022

  27. Nguyen PM, Haghverdi A, De Pue J, Botula YD, Le KV, Waegeman W, Cornelis WM (2017) Comparison of statistical regression and data-mining techniques in estimating soil water retention of tropical delta soils. Biosys Eng 153:12–27

    Article  Google Scholar 

  28. Novianto S, Suzuki Y, Maeda J (2003) Near optimum estimation of local fractal dimension for image segmentation. Pattern Recogn Lett 24(1):365–374

    Article  Google Scholar 

  29. Nussbaumer HJ (1981) Fast Fourier transform and convolution algorithms. Springer, Berlin

    Book  MATH  Google Scholar 

  30. Palmer MW (1988) Fractal geometry: a tool for describing spatial patterns of plant communities. Vegetatio 75(1):91–102

    Article  Google Scholar 

  31. Peleg S, Naor J, Hartley R, Avnir D (1984) Multiple resolution texture analysis and classification. IEEE Trans Pattern Anal Mach Intell PAMI–6(4):518–523

    Article  Google Scholar 

  32. Pinter PJ Jr, Hatfield JL, Schepers JS, Barnes EM, Moran MS, Daughtry CS, Upchurch DR (2003) Remote sensing for crop management. Photogramm Eng Rem Sens 69(6):647–664

    Article  Google Scholar 

  33. Planet Labs: Planet Basemaps. https://assets.planet.com/marketing/PDF/Planet_Basemaps_Product_Specifications.pdf Accessed May 2022

  34. Medar R, Rajpurohit V (2014) A survey on data mining techniques for crop yield prediction. Int J Adv Res Comput Sci Manag Stud 2:59–64

    Google Scholar 

  35. Sangeetha A, Ravichandran M (2016) A survey on data mining approaches to handle agricultural data. Data Min Knowl Eng 8(9):286–290

    Google Scholar 

  36. Sevcikova H, Percival D, Gneiting T (2022) Fractaldim-package. https://cran.r-project.org/web/packages/fractaldim/fractaldim.pdf. Accessed Jan 2022

  37. Shapiro M, Westervelt J (1994) r. mapcalc: An algebra for GIS and image processing. Technical report, DTIC Document

  38. Stark A (2000) Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans Image Process 9:889–896

    Article  Google Scholar 

  39. USGS: Earth explorer. https://earthexplorer.usgs.gov/

  40. Winter C, Kipf, A, Anneser C, Zacharatou ET, Neumann T, Kemper A (2019) Geoblocks: a query-cache accelerated data structure for spatial aggregation over polygons. arXiv preprint arXiv:1908.07753

  41. Witten TA, Sander LM (1983) Diffusion-limited aggregation. Phys Rev B 27(9):5686

    Article  MathSciNet  Google Scholar 

  42. Woebbecke DM, Meyer GE, Von Bargen K, Mortensen DA (1995) Color indices for weed identification under various soil, residue, and lighting conditions. Trans ASAE 38(1):259–269

    Article  Google Scholar 

  43. Zacharatou ET, Doraiswamy H, Ailamaki A, Silva CT, Freire J (2017) GPU rasterization for real-time spatial aggregation over arbitrary polygons. Proc VLDB Endowm 11(3):352–365

    Article  Google Scholar 

  44. Zermas D, Nelson HJ, Stanitsas P, Morellas V, Mulla DJ, Papanikolopoulos N (2020) A methodology for the detection of nitrogen deficiency in corn fields using high-resolution RGB imagery. IEEE Trans Autom Sci Eng 18:1879–1891

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Denton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This material is based upon work supported by the National Science Foundation through Grant IIA-1355466.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denton, A.M., Goetze, J. & Dusek, N.S. Iterative sliding window aggregation for generating length-scale-specific fractal features. Knowl Inf Syst 64, 3463–3489 (2022). https://doi.org/10.1007/s10115-022-01754-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-022-01754-w

Keywords

Navigation