Skip to main content
Log in

Evaluation of information diffusion path based on a multi-topic relationship strength network

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Paths in online social networks play different roles in information dissemination. Ranking edges and identifying the influential edges in OSNs are imperative for intervening in or guiding information diffusion. The existing studies are limited to measuring the weight of paths in networks or the impact of paths on network connectivity while ignoring measuring the role of paths in information diffusion. In this study, we solve the problem by constructing an interactive network and calculating the information diffusion capacity (IDC) of paths. First, a multi-topic relationship strength network is constructed to describe users’ interactive preferences. Second, we propose the IDC method to measure the IDC of paths considering users’ interactive activity, relationship strength, users’ influence and users’ topic preferences. Users’ multi-topic relationship strength makes it possible to distinguish the importance of edges under different topics. Finally, we compare the IDC method with the baseline methods including the connectivity-based method and the method of edge betweenness centrality from the perspectives of ranking granularity and spreading ability in two subnets from Sina Weibo and Twitter. The results show that the IDC method ranks edges in finer grain than the connectivity-based method. Based on the SIR model, we compare the spreading ability of the three methods and find that the important edges evaluated by the IDC method behave better in topic spreading. Application exploration shows that the backbone network and the weak ties in information diffusion can be discovered through evaluating the paths in the relationship strength network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Curiskis SA, Drake B, Osborn TR, Kennedy PJ (2020) An evaluation of document clustering and topic modelling in two online social networks: Twitter and Reddit. Inf Process Manag 57(2):102034. https://doi.org/10.1016/j.ipm.2019.04.002

    Article  Google Scholar 

  2. Osho A, Goodman C, Amariucai G (2020) MIDMod-OSN: a microscopic-level information diffusion model for online social networks. In: Chellappan S, Choo K-KR, Phan N (eds) Computational data and social networks. Springer, Berlin, pp 437–450. https://doi.org/10.1007/978-3-030-66046-8_36

    Chapter  Google Scholar 

  3. Molaei S, Zare H, Veisi H (2020) Deep learning approach on information diffusion in heterogeneous networks. Knowl-Based Syst 189:105153. https://doi.org/10.1016/j.knosys.2019.105153

    Article  Google Scholar 

  4. Molaei S, Babaei S, Salehi M, Jalili M (2018) Information spread and topic diffusion in heterogeneous information networks. Sci Rep 8(1):9549. https://doi.org/10.1038/s41598-018-27385-2

    Article  Google Scholar 

  5. Gui H, Sun Y, Han J, Brova G (2014) Modeling topic diffusion in multi-relational bibliographic information networks. In: Proceedings of the 23rd ACM international conference on conference on information and knowledge management, pp 649–658. https://doi.org/10.1145/2661829.2662000

  6. Kossinets G, Watts D (2006) Empirical analysis of an evolving social network. Science 311(5757):88–90. https://doi.org/10.1126/science.1116869

    Article  MathSciNet  MATH  Google Scholar 

  7. Manuel G, Jure L, David B, Bernhard S (2014) Uncovering the structure and temporal dynamics of information propagation. Netw Sci 2(01):26–65. https://doi.org/10.3929/ethz-b-000094313

    Article  Google Scholar 

  8. Peixoto T (2019) Network reconstruction and community detection from dynamics. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.123.128301

    Article  Google Scholar 

  9. Zigron S, Bronstein J (2019) “Help is where you find it”: the role of weak ties networks as sources of information and support in virtual health communities. JASIST 7(2):130–139. https://doi.org/10.1002/asi.24106

    Article  Google Scholar 

  10. Lyu D, Yuan Y, Wang L, Wang X, Pentland A (2022) Investigating and modeling the dynamics of long ties. Commun Phys 5(1):87. https://doi.org/10.1038/s42005-022-00863-w

    Article  Google Scholar 

  11. Zheng J, Li Q, Liao J, Wang S (2021) Explainable link prediction based on multi-granularity relation-embedded representation. Knowl-Based Syst 230:107402. https://doi.org/10.1016/j.knosys.2021.107402

    Article  Google Scholar 

  12. Dhelim S, Aung N, Ning H (2020) Mining user interest based on personality-aware hybrid filtering in social networks. Knowl-Based Syst 206:106227. https://doi.org/10.1016/j.knosys.2020.106227

    Article  Google Scholar 

  13. Fu X, Zhang J, Meng Z, King I (2020) MAGNN: metapath aggregated graph neural network for heterogeneous graph embedding. In: Proceedings of the web conference vo. 2020, pp 2331–2341. https://doi.org/10.1145/3366423.3380297

  14. Manuel G, Jure L, Krause A (2012) Inferring networks of diffusion and influence. ACM Trans Knowl Discov Data 5(4):1–37. https://doi.org/10.1145/2086737.2086741

    Article  Google Scholar 

  15. Manuel G, Jure L, Bernhard S (2013) Structure and dynamics of information pathways in online media. In: Proceedings of the sixth ACM international conference on web search and data mining, pp 23–32

  16. Li C, Lin Y, Yeh M (2018) Forecasting participants of information diffusion on social networks with its applications. Inf Sci 422:432–446. https://doi.org/10.1016/j.ins.2017.09.034

    Article  Google Scholar 

  17. Liu W, Deng Z, Cao L, Xu X, Liu H, Gong X (2017) Mining top k spread sources for a specific topic and a given node. IEEE Trans Cybern 45(11):2472–2483. https://doi.org/10.1109/TCYB.2014.2375185

    Article  Google Scholar 

  18. Zhu H, Yin X, Ma J, Hu W (2016) Identifying the main paths of information diffusion in online social networks. Physica A 452:320–328. https://doi.org/10.1016/j.physa.2016.01.048

    Article  Google Scholar 

  19. Gao C, Wei D, Hu Y, Sankaran M, Yong D (2014) A modified evidential methodology of identifying influential nodes in weighted networks. Physica A 392(21):5490–5500. https://doi.org/10.1016/j.physa.2013.06.059

    Article  MathSciNet  MATH  Google Scholar 

  20. Freeman L (1977) A set of measures of centrality based on betweenness. Sociometry 40(1):35–41. https://doi.org/10.2307/3033543

    Article  Google Scholar 

  21. Freeman L (1978) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239

    Article  Google Scholar 

  22. Li C, Wang L, Sun S, Xia C (2018) Identification of influential spreaders based on classified neighbors in real-world complex networks. Appl Math Comput 320:512–523. https://doi.org/10.1016/j.amc.2017.10.001

    Article  MathSciNet  MATH  Google Scholar 

  23. Zareie A, Sheikhahmadi A, Jalili M, Fasaei MSK (2020) Finding influential nodes in social networks based on neighborhood correlation coefficient. Knowl-Based Syst 194:105580. https://doi.org/10.1016/j.knosys.2020.105580

    Article  Google Scholar 

  24. Samanta S, Dubey VK, Sarkar B (2021) Measure of influences in social networks. Appl Soft Comput 99:106858. https://doi.org/10.1016/j.asoc.2020.106858

    Article  Google Scholar 

  25. Weng J, Lim E, Jiang J, He Q (2010) Twitterrank: finding topic-sensitive influential twitterers. In: Proc. of the 3rd ACM international conf. on web search and data mining, pp 261–270. https://doi.org/10.1145/1718487.1718520

  26. An L, Zhou W, Ou M, Li G, Yu C, Wang X (2021) Measuring and profiling the topical influence and sentiment contagion of public event stakeholders. Int J Inf Manag 58:102327. https://doi.org/10.1016/j.ijinfomgt.2021.102327

    Article  Google Scholar 

  27. Bahutair M, Al Aghbari Z, Kamel I (2022) NodeRank: finding influential nodes in social networks based on interests. J Supercomput 78(2):2098–2124. https://doi.org/10.1007/s11227-021-03947-6

    Article  Google Scholar 

  28. Albert R, Barabási A (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47–97. https://doi.org/10.1103/RevModPhys.74.47

    Article  MathSciNet  MATH  Google Scholar 

  29. Brandes U (2001) A faster algorithm for betweenness centrality. J Math Sociol 25(2):163–177. https://doi.org/10.1080/0022250X.2001.9990249

    Article  MATH  Google Scholar 

  30. Sosnowska J, Skibski O (2018) Path evaluation and centralities in weighted graphs—an axiomatic approach. In: Proceedings of the twenty-seventh international joint conference on artificial intelligence main track, vol 536, pp 3856–3862. https://doi.org/10.24963/ijcai.2018/536

  31. Wu R, Zhou Y, Chen Z (2019) Identifying urban traffic bottlenecks with percolation theory. Urban Transp China 17(01):96–101. https://doi.org/10.13813/j.cn11-5141/u.2019.0002

  32. Wang S, Li C, Wang Z, Chen H, Zheng K (2020) BPF++: a unified factorization model for predicting retweet behaviors. Inf Sci. https://doi.org/10.1016/j.ins.2019.12.017

    Article  Google Scholar 

  33. Dai T, Xiao Y, Liang X, Li Q, Li T (2022) ICS-SVM: a user retweet prediction method for hot topics based on improved SVM. Digital Commun Netw 8(2):186–193. https://doi.org/10.1016/j.dcan.2021.07.003

    Article  Google Scholar 

  34. Yin X, Wang H, Yin P, Zhu H (2019) Agent-based opinion formation modeling in social network: a perspective of social psychology. Physica A 532:121786. https://doi.org/10.1016/j.physa.2019.121786

    Article  MATH  Google Scholar 

  35. Tang J, Sun J, Wang C, Yang Z (2009) Social influence analysis in large-scale networks. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, pp 807–816. https://doi.org/10.1145/1557019.1557108

  36. Ju C, Tao W (2017) A novel relationship strength model for online social networks. Multimed Tools Appl 76(16):17577–17594. https://doi.org/10.1007/s11042-017-4408-4

    Article  Google Scholar 

  37. Jin Z, Liu R, Li Q, Zeng D, Zhan Y, Wang L (2016) Predicting user's multi-interests with network embedding in health-related topics. In: 2016 International joint conference on neural networks (IJCNN), pp 2568–2575. https://doi.org/10.1109/IJCNN.2016.7727520

  38. Blei D, Ng A, Jordan M (2003) Latent Dirichlet Allocation. J Mach Learn Res 3:993–1022. https://doi.org/10.1162/jmlr.2003.3.4-5.993

    Article  MATH  Google Scholar 

  39. Lü L, Chen D, Zhou T (2011) The small world yields the most effective information spreading. New J Phys 13(12):123005. https://doi.org/10.1088/1367-2630/13/12/123005

    Article  Google Scholar 

  40. Li Q, Zhou T, Lü L, Chen D (2014) Identifying influential spreaders by weighted LeaderRank. Physica A. https://doi.org/10.1016/j.physa.2014.02.041

    Article  MathSciNet  MATH  Google Scholar 

  41. Nicosia V, Tang J, Musolesi M, Russo G, Mascolo C, Latora V (2012) Components in time-varying graphs. Chaos Interdiscip J Nonlinear Sci 22(2):023101. https://doi.org/10.1063/1.3697996

    Article  MathSciNet  MATH  Google Scholar 

  42. Han W, Zhu X, Zhu Z, Chen W, Zheng W, Lu J (2016) A comparative analysis on Weibo and Twitter. Tsinghua Sci Technol 21(1):1–16. https://doi.org/10.1109/TST.2016.7399279

    Article  Google Scholar 

  43. Fatemi B, Molaei S, Pan S, Rahimi SA (2022) GCNFusion: An efficient graph convolutional network based model for information diffusion. Expert Syst Appl 202:117053. https://doi.org/10.1016/j.eswa.2022.117053

    Article  Google Scholar 

  44. Filiposka S, Gajduk A, Dimitrova T, Kocarev L (2017) Bridging online and offline social networks: multiplex analysis. Physica A 471:825–836. https://doi.org/10.1016/j.physa.2016.12.050

    Article  Google Scholar 

  45. He W, Ai D, Wu C (2021) A recommender model based on strong and weak social ties: a long-tail distribution perspective. Expert Syst Appl 184:115483. https://doi.org/10.1016/j.eswa.2021.115483

    Article  Google Scholar 

  46. Jia J, Chen Y, Li Y, Li T, Chen N (2021) Effect of weak ties on degree and H-index in link prediction of complex network. Mod Phys Lett B 35(18):2150301. https://doi.org/10.1142/S0217984921503012

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China [Grant Numbers 71874088, 71704085]; the Cultivation Base of Excellent Innovation Team in Philosophy & Social Sciences in Jiangsu Universities [Grant Number 2017ZSTD022].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyi Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Yang, X., Wei, J. et al. Evaluation of information diffusion path based on a multi-topic relationship strength network. Knowl Inf Syst 65, 1199–1220 (2023). https://doi.org/10.1007/s10115-022-01794-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-022-01794-2

Keywords

Navigation